单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数的方法

文档序号:6216680阅读:266来源:国知局
单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数的方法
【专利摘要】本发明涉及一种用单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数的方法。它解决了在岩石力学参数实验目标岩心稀缺条件下,无法进行正常的实验操作获取不同温度条件下岩石力学参数及所测数据可信性的问题。该方法主要包括下列步骤:1、温度升至T1,在体积应变曲线斜率与应变轴夹角为90°时,得到T1条件下力学参数。2、温度升至T2,在体积应变曲线斜率与应变轴夹角为90°时,得到T2条件下力学参数。3、根据需要提升温度,得到不同温度条件下力学参数。该方法利用单块岩心试件来测量不同温度条件下岩石力学参数,能够较好的克服目标岩心稀缺的问题,最大限度的利用岩心资源,在石油工程中有较好的应用前景。
【专利说明】单块岩心试件通过逐级升温测量在不同温度条件下岩石力 学参数的方法

【技术领域】
[0001] 本发明涉及石油开发【技术领域】的一种实验方法,尤其是一种用单块岩心试件通过 逐级升温测量在不同温度条件下岩石力学参数的方法,能够较好的在目标岩心稀缺的情况 下通过逐级升温,测量出在不同温度下岩石的力学响应,并量化为抗压强度、弹性模量、泊 松比三种力学参数。

【背景技术】
[0002] 随着国内油气田开发的不断发展,以及海外业务的不断扩大,国内外特种油藏开 发技术要求越来越高,全面了解和掌握在不同温度条件下地层岩石的力学参数,对确定油 气田开发方案,指导现场施工提供重要依据。尤其对于油砂热采工艺,了解不同温度下岩石 的力学响应是极为重要的。应用MTS电液伺服系统对标准尺寸的岩心在不同温度条件下进 行试验是确定不同温度条件下岩石力学参数的重要技术手段。
[0003] 现今,受全球化大趋势的影响,我国处于战略需要对于海外及特种油藏开发日益 重视。在海外油气开采及特种油藏开发过程中,由于工艺需要,特别是油砂热采过程中,所 面对的温度环境越来越复杂,底层受温度影响较大,岩石在不同温度下的力学响应难以准 确预测,而实验室获取的常温条件下利用标准尺寸岩心直接测量出来的岩石力学参数不能 满足实际情况的要求,需要针对不同温度条件下进行试验。在岩心样品难以大量获取,仅有 少量岩心可供实验的条件下,获取多个温度点上岩心的多组力学参数往往是难以实现的, 单组数据往往很难全面反映出温度作用下地层的真实力学响应。
[0004] 在考虑岩心资源宝贵,充分利用已有岩心资源的情况下,使得单块岩心试件在不 同温度条件下能测得多组数据成为了一个可攻克和优化的问题。将温度逐级提升,在小范 围内进行加载,利用体积应变作为判别条件,使得在保有实验精度的情况下将现有岩心资 源利用最大化。


【发明内容】

[0005] 为了克服现有实验条件下,实验岩心稀缺,不同温度下实验数据所需较多所带来 的问题。本发明提供了一种单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参 数的方法,该方法利用现已有实验设备具有操作简单、测量误差小、工作效率高和岩心利用 率高等特点。
[0006] 本发明采用的技术方案是:该方法包括下列步骤:
[0007] (1)利用已有三轴试验机安装固定标准岩心试件,根据岩心所处地层深度,将围压 提升至一定数值。
[0008] (2)将高压腔内温度提甚至1\。
[0009] (3)控制位移加载速率为0. 0035mm/min进行加载。
[0010] (4)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0011] (5)记录第一次加载过程中的应力和变形数据及相关曲线图。
[0012] (6)将高压腔内温度提甚至T2。
[0013] (7)控制位移加载速率为0. 0035mm/min进行加载。
[0014] (8)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0015] (9)记录第二次加载过程中的应力和变形数据及相关曲线图。
[0016] (10)根据实际测量需要重复步骤获得不同温度条件下实验数据,直至达到岩心的 抗压强度,岩心破坏。
[0017] 实验过程主要包括岩心试件的安装、加载、卸载记录等,实验过程中每块岩心的加 载和卸载速率保持不变,进行单轴加载。具体步骤如下:
[0018] 1)安装岩心试件:安装轴向、径向应变仪及紧固装置,并将试件安放在加载台上。
[0019] 2)将高压腔筒安装紧固,开始泵油加压至指定围压。
[0020] 3)利用控制系统对试件进行预加载,使岩心试样获得1KN的载荷。
[0021] 4)利用控制系统对高压腔内升温,使温度达到?\
[0022] 5)待岩心试样和系统参数稳定后对试件开始轴向加载,控制加载速率为 0. 0035mm/min,加载过程中对实验数据进行监测。
[0023] 6)实时测量计算体积应变曲线斜率,当体积应变曲线切线夹角与应变轴夹角达到 90°时停止加载。
[0024] 7)记录并保存第一次加载过程中获得的相关数据和图形。
[0025] 8)对数据和曲线进行分析处理,得到岩心在?\条件下的弹性模量和泊松比。求解 弹性模量的方法为:应变=加载过程中轴向变形/岩心试件的长度;画出加载过程中的应 力、应变图;求取曲线中直线段的斜率,即为弹性模量。求解泊松比的方法为:轴向应变=加 载过程中轴向变形/岩心试件的长度;径向应变=加载过程中径向变形/岩心试件的直径; 画出加载过程中的轴向应变、径向应变图;求取曲线中直线段的斜率,即为泊松比。
[0026] 9)利用控制系统对高压腔内再次升温,使温度达到在Τ2
[0027] 10)待岩心试样和系统参数稳定后对试件开始轴向加载,控制加载速率为 0. 0035mm/min,加载过程中对实验数据进行监测。
[0028] 11)实时测量计算体积应变曲线斜率,当体积应变曲线切线夹角与应变轴夹角达 到90°时停止加载。
[0029] 12)记录并保存第二次加载过程中获得的相关数据和图形。
[0030] 13)对数据和曲线进行分析处理,得到岩心在在?\条件下的弹性模量和泊松比。求 解弹性模量的方法为:应变=加载过程中轴向变形/岩心试件的长度;画出加载过程中的 应力、应变图;求取曲线中直线段的斜率,即为弹性模量。求解泊松比的方法为:轴向应变= 加载过程中轴向变形/岩心试件的长度;径向应变=加载过程中径向变形/岩心试件的直 径;画出加载过程中的轴向应变、径向应变图;求取曲线中直线段的斜率,即为泊松比。
[0031] 14)根据实际测量需要重复以上步骤获得不同温度条件下实验数据,直至达到岩 心的抗压强度,岩心破坏。
[0032] 15)分别对不同温度条件下岩心的弹性模量和泊松比进行绘图和总结,并记录。
[0033] 绘制不同温度作用下岩心加载过程中应力应变曲线图。
[0034] 根据单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数的方法为: 例如现仅有目标地层岩心一块,要得到岩心在50°C、100°C、150°C三种不同温度下的岩石力 学参数,通过三级升温测试后即可获得三中不同温度下的岩石力学参数(弹性模量、泊松 比),如图2所示。
[0035] 与现有技术相比,本发明在操作和实施过程中,具有以下优点:⑴利用实际岩心 资源少,能利用单块岩心试件测量多个温度下的岩石力学参数。(2)由于岩石为非均质介 质,单块岩心试件单次测量不同温度下的力学响应较多块不同岩心多次测量,数值上来的 更可靠、更直接、更具有对比性。(3)仅需一次逐级升温过程,不必重复冷却后再升温,大大 节约了试验时间。(4)所涉及的实验过程简便,需要的仪器设备都属于岩石力学工程范围内 的常规仪器,实验效率较高。

【专利附图】

【附图说明】
[0036] 图1为实验中测得的岩心第一次升温50°C加载过程中的应力应变曲线图。
[0037] 图2为实验中测得的岩心50°C -100°C -150°C逐级升温加载过程中的应力应变曲 线图。

【具体实施方式】
[0038] 实验所涉及仪器及其主要功能如下:
[0039] 1、MTS电液伺服控制加载系统以及其它辅助装置:测量岩石在高温和围压条件下 的力学参数,包括弹性模量、泊松比、抗压强度、抗拉强度等力学参数。
[0040] 本发明采用的技术方案是:该方法包括下列步骤:
[0041] (1)利用已有三轴试验机安装固定标准岩心试件,根据岩心所处地层深度,将围压 提升至一定数值。
[0042] (2)将高压腔内温度提甚至50°C。
[0043] (3)控制位移加载速率为0. 0035mm/min进行加载。
[0044] (4)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0045] (5)记录第一次加载过程中的应力和变形数据及相关曲线图。
[0046] (6)将高压腔内温度提甚至100°C。
[0047] (7)控制位移加载速率为0. 0035mm/min进行加载。
[0048] (8)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0049] (9)记录第二次加载过程中的应力和变形数据及相关曲线图。
[0050] (10)将高压腔内温度提甚至150°C。
[0051] (11)控制位移加载速率为0· 0035mm/min进行加载。
[0052] (12)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0053] (13)记录第三次加载过程中的应力和变形数据及相关曲线图。
[0054] 实验过程主要包括岩心试件的安装、升温、加载、卸载记录等,实验过程中每块岩 心的加载和卸载速率保持不变,进行单轴加载。具体步骤如下:
[0055] (1)利用已有三轴试验机安装固定标准岩心试件,根据岩心所处地层深度,将围 压提升至一定数值。
[0056] (2)将高压腔内温度提甚至50°C。
[0057] (3)控制位移加载速率为0. 0035mm/min进行加载。
[0058] (4)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0059] (5)记录第一次加载过程中的应力和变形数据及相关曲线图。如图1所示,曲线段 斜率即为弹性模量。
[0060] (6)将高压腔内温度提甚至100°C。
[0061] (7)控制位移加载速率为0· 0035mm/min进行加载。
[0062] (8)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0063] (9)记录第二次加载过程中的应力和变形数据及相关曲线图。
[0064] (10)将高压腔内温度提甚至150°C。
[0065] (11)控制位移加载速率为0. 0035mm/min进行加载。
[0066] (12)应用MTS电液伺服系统对岩心进行加载,观察所示应力应变曲线图中的体积 应变曲线,记录加载过程中的应力和变形数据及相关曲线图,并实时测量计算体积应变曲 线斜率变化,当体积应变曲线斜率与应变轴夹角为90°时候停止加载。
[0067] (13)记录第三次加载过程中的应力和变形数据及相关曲线图。如图2所示,分别 对应三次不同温度条件下的应力应变曲线图。
[0068] 上述例子表述了单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参 数的方法,实验中给出了对于泥页岩岩心50°C、100°C、150°C这三个温度下岩石力学参数的 测试方法,对于不属于这种岩性的岩心或是需要获得其他温度条件下力学参数的,可以再 单独进行实验来进行。
【权利要求】
1.单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数的方法,该方法包 括下列步骤: a、 将温度提升至!\。 b、 应用MTS电液伺服系统对岩心进行缓慢加载,记录加载过程中的应力和变形数据及 相关曲线图为第一部分。 c、 缓慢加载过程中观察第一部分应力应变曲线图,在其体积应变曲线斜率与应变轴夹 角为90°时停止加载。 d、 对第一部分数据和曲线进行处理,得到?\条件下岩心的弹性模量。 e、 将温度提升至Τ2。 f、 再次应用MTS电液伺服系统对岩心进行缓慢加载,记录加载过程中的应力和变形数 据及相关曲线图为第二部分。 g、 缓慢加载过程中观察第二部分应力应变曲线图,在其体积应变曲线斜率与应变轴夹 角为90°时停止加载。 h、 对第二部分数据和曲线进行处理,得到T2条件下岩心的弹性模量。 i、 根据实际测量需要提升温度并参照之前操作,得到不同温度条件下岩心的弹性模 量,直至达到岩心的抗压强度,岩心破坏。
2. 如权利1所述用单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数 的方法,其特征在于:通过逐级升温来实现对单块岩心试件不同温度条件下的力学参数的 测量要求。
3. 如权利2所述用单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数 的方法,其特征在于:通过逐级升温来实现一次性测量多种温度条件下岩石力学参数。
4. 如权利2所述用单块岩心试件通过逐级升温测量在不同温度条件下岩石力学参数 的方法,其特征在于:针对单个试件逐级升温测量,解决岩心稀缺情况下对数据点的大量需 求。
【文档编号】G01N3/18GK104122149SQ201410026857
【公开日】2014年10月29日 申请日期:2014年1月17日 优先权日:2014年1月17日
【发明者】张广清, 楼烨 申请人:中国石油大学(北京)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1