光学结构及光学光检测系统的制作方法

文档序号:14648334发布日期:2018-06-08 21:20阅读:110来源:国知局
光学结构及光学光检测系统的制作方法

本发明涉及一种光学结构、一种包括所述光学结构的光学光检测系统、一种制造所述光学结构的方法以及一种组装所述光学光检测系统的方法,且特别地,用于分子生物学中的靶分子的检测。



背景技术:

现有多种光学光检测系统可用于检测来自其中含有流体样品的个微流体芯片的光信号,以便能检测所述流体样品中各种分子的存在,例如用于病毒检测的目的。

举例来说,耐甲氧西林金黄色葡萄球菌(methicillin-resistant staphylococcus aureus,MRSA)感染是个全球医院所关注的问题,只要发现延迟数小时就会导致死亡率及发病率升高。近年来,MRSA感染迅速增加,且它在2004年占金黄色葡萄球菌(staphylococcus aureus,SA)感染的60%,而在1995年仅占22%。在公立医院中,已经发现感染MRSA细菌的患者在住院期间死亡的可能性比未感染的患者高出10倍。

作为个示例,图1显示了一个含有四个芯片的样品的样本到结果(sample-to-result)诊断的各个阶段的一个示意性框图。在诊断中,患者的样品首先在第一芯片(芯片1)中进行处理以用于细菌捕获及裂解,随后在第二芯片(芯片2)上进行DNA/RNA纯化,聚合酶链式反应(polymerase chain reaction,PCR)在第三芯片(芯片3)上进行,以通过热循环过程来进行扩增(amplification),第四芯片(芯片4)提供光信号(例如荧光信号)的终点检测(end-point detection)。举例来说,荧光信号可以来自基因特异性(gene-specific)冻干(lyophilized)分子信标(MB)探针。PCR产物/样品中选择的单链DNA(single-stranded DNA,ssDNA)与涂覆在第四芯片的每个井(well)上的预加载的靶MB探针之间可发生杂交(hybridization)。第四芯片可以是,例如,国际专利申请号PCT/SG2015/050054中所述的Omega芯片,且为了所有目的,该专利的全部内容通过引用并入本文。由此,通过读取在被激发光照射时每个井的荧光来进行多重分子诊断(multiplex molecular diagnosis)。这样一个由样本到结果并在终点检测阶段涉及Omega芯片的多重分子诊断可被称作OmegaPlex。

然而,用于读取微流体芯片(例如,在终点检测阶段的Omega芯片)的常规系统既复杂且庞大。举例来说,在微流体芯片为Omega芯片的情况下,读取每个Omega芯片的过程可能涉及十个以上的手动步骤,且通常在完整的测试中需要运行四个Omega芯片(例如,每个芯片能够运行10次测试,因此,用对照测试整组(panel)的MRSA抗性基因(resistance genes),可能需要四个芯片来运行40次测试)。举例来说,为了开始检测,在加载PCR产物以使样品及分子信标探针混合均匀化之后,Omega芯片可能需要被加热至70℃,接着Omega芯片可被放置且手动对准在载具上。另外,可使用黑色胶带以阻挡来自环形光源的光反射及来自用于将系统的各个组件固定在一起的胶的自发荧光(auto-fluorescence)。所有这些步骤都是手动执行的并且是繁琐的。批次间(batch-to-batch)变化的偏差及人为错误将影响每次荧光读数的一致性及可重复性。

作为说明性示例,图2显示了用于读取Omega芯片202的常规荧光检测系统200的一个示意图。常规检测系统200具有反射光路结构,由于自顶部(top-down setup)相机202的有限视角,其通常需要高结构204设置。常规检测系统200包括用于照射Omega芯片202的卤素白光源206,以及沿着如图2所示光路布置的滤光器(激发滤光器208和发射滤光器209)及光学透镜210的组合。常规检测系统200还包括用于检测来自Omega芯片202的荧光信号的检测器211及用于加热Omega芯片102的加热器212。由此,可以看出这种常规配置是复杂和庞大的,此外,例如由于光学透镜210及反射光路结构,也比较容易沿着光路产生信号强度损失。

因此,需要提供一种光学结构及一种包括所述光学结构的光学光检测系统,以寻求克服或至少改善常规光学光检测系统的一个或多个缺陷,例如减少靶分子的检测/诊断时间以及提高信号检测/读取准确性。本发明正是针对此背景而开发的。



技术实现要素:

根据本发明的第一方面,提供一种光学结构,包括:

开口,用于接收芯片,所述芯片包括多个井(wells),所述井用于接收待分析的流体样品于其中;以及

光学掩膜,包括多个孔(apertures),其中所述光学掩膜被定位成贴近所述开口,使得当所述芯片在所述开口中被接收时,所述光学掩膜面向所述芯片,且其中所述多个孔被配置为延伸穿过所述光学掩膜,用于接收及引导分别来自所述多个井的光。

在各种实施例中,所述多个孔中的每一个都是基于预定位置被布置于所述光学掩膜上,所述预定位置是当所述芯片被接收于该所述开口中时所述多个井中的对应的井被配置的位置。

在各种实施例中,所述多个孔中的每一个被配置为使得延伸穿过所述光学掩膜的所述孔的中心轴与形成有所述多个孔的所述光学掩膜的表面垂直的轴有一个偏离夹角。

在各种实施例中,所述孔的所述中心轴与所述轴的所述偏离夹角是基于预定位置被配置的,所述预定位置是所述芯片被收容接收于所述开口中时,所述多个井中的对应的井被配置的位置。

在各种实施例中,所述孔的所述中心轴被配置为与所述对应的井的所述预定位置相交。

在各种实施例中,所述角度是在约5°至约60°的范围内。

在各种实施例中,所述多个孔中的一个或多个被配置为具有锥形形状。

在各种实施例中,所述开口被配置为可移除地接收所述芯片。

在各种实施例中,所述光学结构被配置为可移除地接收所述光学掩膜。

在各种实施例中,所述光学结构是无透镜的。

在各种实施例中,所述光学掩膜被布置在贴近所述开口,使得当所述芯片在所述开口中被接收时,所述光学掩膜紧贴所述芯片。

根据本发明的第二方面,提供一种光学光检测系统,包括:

根据上述第一方面的光学结构,用于接收芯片于其中,所述芯片包括多个井,所述多个井用于接收待分析的流体样品于其中;

光源,用于朝向所述光学结构发射光;以及

检测器,用于检测来自接收了所述流体样品于其中的所述多个井中的每一个的光信号。

在各种实施例中,当所述芯片在所述开口中被接收时,响应于来自所述光源的光,所述光学结构的所述光学掩膜的所述多个孔被配置为将分别来自所述多个井的所述光信号引导至所述检测器。

在各种实施例中,所述多个孔中的每一个被配置为使得所述孔的所述中心轴与来自所述对应的井至所述检测器上的靶点的所述光信号的轨迹线对准。

在各种实施例中,所述光学光检测系统还包括布置于所述检测器及所述光学结构之间的遮光部件,所述遮光部件用于包围所述光学结构的一侧的所述多个孔,以防止或最小化外部噪声影响从所述多个井至所述检测器的所述光信号。

在各种实施例中,所述光源包括多个发光元件,每个发光元件用于发射光以照射所述芯片的对应的井。

在各种实施例中,所述光源、所述光学结构及所述检测器被设置成大致沿着同一轴线。

根据本发明的第三方面,提供一种制造光学结构的方法,所述方法包括:

在结构中形成开口,所述开口用于接收芯片,所述芯片包括多个井以用于接收待分析的流体样品于其中;以及

形成包括多个孔的光学掩膜,且将所述光学掩膜定位在贴近所述开口,使得当所述芯片在所述开口中被接收时,所述光学掩膜面向所述芯片,其中所述多个孔被配置为延伸穿过所述光学掩膜,以用于接收和引导分别来自所述多个井的光。

根据本发明的第四方面,提供一种组装光学光检测系统的方法,所述方法包括:

提供如上述第一方面所述的光学结构,以用于接收芯片于其中,所述芯片包括多个井,用于接收待分析的流体样品于其中;

提供光源,用于朝向所述光学结构发射光;以及

提供检测器,用于检测来自被保持在所述光学结构中的所述芯片的光信号。

在各种实施例中,所述方法更包括将所述光源、所述光学结构及所述检测器设置成大致沿着同一轴线。

附图说明

通过以下书面描述,仅作为示例并结合附图,本领域中普通技术人员可以更好地理解本发明的实施例,并且这些实施例是显而易见的,其中:

图1显示示意性框图,其示出了包括四个芯片的样品的样本到结果(sample-to-result)诊断的各个阶段;

图2显示用于读取微流体芯片的常规荧光检测系统的示意图;

图3A显示根据本发明各种实施例的光学结构的示意性立体图;

图3B显示图3A中的光学结构在无芯片插入的情况下的示意立体特写图;

图4A显示所述光学结构以及用于检测/接收来自微流体芯片的光信号的检测器的示意立体图;

图4B为图4A的特写图,其示出了多个孔被配置于光学掩膜上,从而与多个井分别光学对准,以接收来自所述多个井的光信号;

图5A显示根据本发明示例性实施例的具有不同焦距的五个不同光学结构的图像,所述不同焦距分别为85mm、65mm、45mm、25mm以及20mm;

图5B至图5F分别显示当不同光学结构被来自其相对侧的光源照射时,由检测器所捕获的来自所述不同光学结构的光信号的相应图像;

图6显示根据本发明各种实施例的光学光检测系统的示意图;

图7显示根据本发明示例性实施例的光源包括单独的LED光源的示意图,其中每个LED光源用于向芯片的对应/相应的井提供激发光;

图8A至图8C显示根据本发明示例性实施例的光学光检测系统中加入遮光部件的示例布置的图像;

图9显示根据本发明示例性实施例的光学光检测系统的示意图,以及仅用于说明目的的所述光学光检测系统的对应的图像;

图10A至图10E显示加载于相应微流体芯片中并由检测器所检测的各种流体样品(分别具有耐药基因组MRSA 339/07、MSSA 02/09、MUCH 16/09、MRSA 23/01及无模板对照)发出的荧光信号的图像;

图11A显示根据本发明示例性实施例的为了测试图6的光学检测系统的一致性及可靠性而进行的实验所得到的结果图;

图11B显示为了测试保持芯片插入其中的光学结构的稳定性/可靠性(对准精度)而进行的实验所得到的结果图;

图12显示使用手动(图2的常规检测系统-图12中的顶部行图像)及自动(本检测系统600-图12中底部行图像)荧光检测系统所捕获的图像以用于比较/验证;

图13显示来自芯片的各个井与系列稀释的浓度(serial diluted concentration)的光强度的线性关系图;

图14显示使用图6的本光学检测系统在分别使用具有MRSA 2301、S205的耐药基因组及无模板对照(NTC)的实际样品的测试中所检测的荧光信号,以及显示光信号的检测结果的示例性用户界面;

图15A及图15B显示光学光检测系统的图像,还包括用于封闭/容纳如图9所示的光学结构、光源及检测器的外部壳体或外壳;

图16显示根据本发明各种实施例的制造光学结构的方法的框图;以及

图17显示根据本发明各种实施例的组装光学光检测系统的方法的框图。

具体实施方式

本发明实施例提供一种光学结构及一种光学光检测系统,其寻求克服或至少改善常规光学光检测系统的上述或多个缺陷,且特别地,可用于分子生物学中的生化/靶分子的检测。在各种实施例中,提供一种光学光检测系统,用于检测来自其中含有流体样品的微流体芯片的光信号(例如荧光或比色(colorimetric)光信号),例如在如图1中所示的样品的样本到结果(sample-to-result)诊断的终点检测阶段。在各种实施例中,该微流体芯片为Omega芯片,如国际专利申请号PCT/SG2015/050054中所述,为了如前面所述的所有目的,该专利的全部内容通过引用并入本文。举例来说,在各种实施例中,该光学光检测系统被设计/配置为全自动、紧凑、无透镜(在光源及检测器之间)、LED照明的荧光检测平台。因此,该光学光检测系统能够简化测试或诊断方案(例如,显著减少所需步骤的数量,例如由常规上11个步骤变为3个步骤),及最小化诊断时间和可能的人为错误。该光学光检测系统还可有利地允许多任务(multiplex)、高灵敏度及快速检测。举例来说,该光学光检测系统已经在各种实验进行中进行了测试,且发现在微流体芯片(例如Omega芯片)被接收/加载到该光学光检测系统中后,仅需要非常短的时间(例如约8秒或更短)即可得到检测结果。

图3A显示根据本发明各种实施例的光学结构300的示意立体图。光学结构300包括开口302,其用于接收/加载芯片304于其中,芯片304包括多个井(或反应室)306,所述多个井用于接收待分析的流体样品于其中。如图3A所示,芯片304被接收/加载到开口302中的适当位置,芯片304为微流体芯片,且仅作为示例而非限定地具体是一个Omega芯片,其具有以对称或圆形方式布置在该芯片上十个井。优选地,开口302被配置为能够可移除地接收芯片304,例如插槽,而使得芯片304可以容易地插入或取出于光学结构300。光学结构300还包括包含多个孔(或通孔)310的光学掩膜308。应可理解的是,在图3A中不能看到光学掩膜308,因为其被插入光学结构300中的芯片304所阻挡而看不到。在这点上,图3B显示了无芯片304插入其中的光学结构300的示意立体图,其为特写图,以更好地示出光学掩膜308。如图所示,光学掩膜308被定位成贴近开口302,使得当芯片304被接收于开口302中时,光学掩膜308(特别是所述多个孔310)面向芯片304。此外,所述多个孔310被配置为延伸穿过光学掩膜308(如图3B中所示),用于接收及引导分别来自所述多个井306的光信号。在各种实施例中,光学结构300可被称为芯片载具。

举例来说,光学光检测系统可以基于荧光或比色光信号。

由图3A及图3B可以看出,所述多个孔310中的每一个是基于预定位置被布置于光学掩膜308上,该预定位置是当芯片306被接收于开口302中时,所述多个井306中的对应的井将处于被或被配置(亦即预期的或预先配置的)的位置,也就是说,所述多个孔310被布置在光学掩膜308上,是考虑到当芯片306被接收于开口302中时,芯片306的所述多个井306将位于或被配置于何处(预定位置),且优选地,使得所述多个孔310与所述多个井306分别光学对准,以接收来自所述多个井306的光信号。如图3A及3B所示,可以在光学掩膜308上为芯片304的相应的井306设置一个孔310,因此,在图3A及3B的实施例中,在光学掩膜308上设置有十个孔310,以与芯片304上的十个井306对应。

作为示例说明,图4A显示光学结构300以及用于检测/接收来自多个井308的光信号(例如荧光或比色光信号)的检测器(或相机)414的示意立体图,所述多个井308中含有接收的流体样品,而图4B为图4A的特写图,其示出了所述多个孔310被配置于光学掩膜308上,从而分别与所述多个井308光学对准,以接收来自所述多个井308的光信号。图4B也显示每个孔310是基于所述对应的井306的预定位置而定向/倾斜,以便将光信号引导至检测器414处的靶点416(例如预期的焦点)。在这方面,所述多个孔310中的每一个被配置为使得延伸穿过光学掩膜308的孔310(例如,参见图3B)的中心轴312与形成有所述多个孔310的光学掩膜308的表面垂直的轴314有偏离夹角316。孔310的中心轴312与该垂直轴314的偏离夹角316是基于当芯片304被接收于开口302中时该对应的井306的预定位置被配置,如图4B所示,使得孔310能够将从芯片304接收的光信号引导至检测器414处的靶点416。在优选实施例中,每个孔310的中心轴312的角度被配置为使得所述多个孔310的中心轴312共同形成/定义成锥形形状,其具有与检测器414上的靶点416相交的顶点,如图4B所示。因此,该孔310的中心轴312被配置为与相应的井306的预定位置相交,而使得当芯片304被插入开口302中时,孔310的中心轴312可与相应的井306相交。

因此,有利地,用于接收芯片304于其中及将来自芯片304的光信号引导至检测器414上的靶点416的光学结构300是无透镜的(无透镜光学掩膜),这使其更容易批量生产,并能够以最小信号强度损失的方式引导光信号(例如,消除由于光学透镜造成的信号强度损失)。在各种实施例中,如图4B所示,光学掩膜308可用于将来自芯片304的光信号(例如从每个井306发射出的多个荧光信号)引导至检测器414处的单个靶点。在各种实施例中,光学掩膜308被布置为贴近开口302,而使得当芯片304被接收于开口302中时,光学掩膜308紧贴(适当地或紧密地靠近)芯片304,这是为了使从芯片304的井306接收的光信号最大化地进入相应的孔310中,同时将这些光信号受到外部/背景噪声的干扰最小化。举例来说,该无透镜的光学掩膜308可有效地去除来自环境中散射的LED光中的噪声,从而改善具有较高信噪比(SNR)的光信号(例如荧光信号)的检测。相反地,举例来说,常规荧光光学检测系统涉及多个透镜的组合(例如,参见图2),及使用较多数量的光学组件,使得光学检测系统的组装及大规模生产复杂化。

在各种实施例中,孔310的中心轴312与垂直轴314的上述偏离夹角被配置为在约5°至约60°、约10°至约45°、约15°至约40°、约20°至约35°、或约25°至约40°的范围内。仅作为示例而非限定,在图3B的实施例中,该角度316是约26°。本领域技术人员应可理解的是,光学结构300上的孔310的配置(例如数量、位置及方向)可基于芯片304上井的配置而适当地被配置/修改,从而使得每个孔310与相应的井306光学对准,以便能够将来自该相应的井306的光信号引导至检测器414处的靶点416。因此,应当理解的是根据本发明的孔310的配置并不限于图3B及4B中所示的具体配置。

在各种实施例中,通过调整/配置孔310的方向(中心轴312的角度)来优化从芯片304的平面至检测器414的焦距。在这方面,在光信号是荧光的情况下,已经发现,若焦距太长,则噪声(蓝色散射光)不能被完全消除,另一方面,若焦距太短,当由检测器414检测到时,则在井的圆环周围存在信号(绿色荧光)的阴影。由此,根据本发明实施例可调整焦距从而得到最大信号及最小噪声。作为示例说明,图5A显示具有不同焦距的五个不同光学结构的图像,所述不同焦距分别为85mm、65mm、45mm、25mm以及20mm,而图5B至5F分别显示当不同光学结构300被来自其相对侧的光源(在本例中为LED光)照射时,来自所述不同光学结构300的由检测器414所检测的光的图像。由图5B至5D可以观察到,当焦距从85mm缩短至65mm至45mm时,从孔310的侧壁散射及反射的光的噪声逐渐减小。在各种实施例中,优化的条件/配置是当检测器414检测时,LED光亮度表现为清晰的点,且不发生任何反射。当焦距为20mm时,如图5F所示,可以观察到反射由向外转成向内,因此,根据本发明的示例性实施例,可以确定该示例的最佳焦距是在约25mm至约20mm的范围内。应注意的是,在图5E及5F所示的荧光图像中可以观察到相对少量的反射,可以理解的是,它们可能由实验中使用的非常高强度的荧光样品所引起。在另一实验中,当使用低强度荧光样品(通常是在练习)来进行测试时,则一般不会观察到上述少量的反射。

在各种实施例中,多个孔310的一个或多个被配置为具有锥形形状。在这方面,孔310可成形为从接收光信号的孔310的端部(光输入端)至输出光信号的孔310的端部(光输出端)渐缩,因此,孔310的光输入端可比孔310的光输出端具有更大的截面。举例来说,如图3B所示,孔310可被配置为具有大致圆锥形形状。此外,多个孔310可以设置于光学掩膜304上,以共同形成/定义成大致对称的形状。举例来说,在芯片304为如图4A和4B所示的Omega芯片的情况下,孔310可被设为具有圆形形状,使得孔310的布置对应于井306的布置。通过这样的配置,如图4B所示,多个孔310(特别是它们的光路)共同形成/定义成朝向检测器414处的靶点416的圆锥形状,此外,芯片304的井306(特别是它们的光路)也形成朝向检测器414处的靶点416的圆锥形状。这种孔310及井306的配置可被称作双锥形结构,且已经发现能够提供最佳的观察角度及通过孔310从检测器414至芯片304的最大开口,从而使光散射最小化。已经发现,该双锥形光学掩膜308还可改善检测器414对来自芯片304的光信号的检测且具有较高的信噪比(SNR)。

在各种实施例中,每个孔310的直径是基于芯片304上的对应的井306的直径来配置。在各种实施例中,孔310在光输入端的直径可被配置为对应的井306的直径的约60%至100%、约70%至95%、约75%至85%、或约80%。在如上所述孔310为渐缩的实施例中,孔310在光输出端的直径是较窄的,使得孔310具有如上文所述的圆锥形形状。在各种示例性实施例中,孔310在光输出端的直径比在光输入端的直径可窄约5%至40%、约10%至30%、或约15%至20%。例如但不限于,各种井的直径可为约1mm至4mm、约1.5mm至4mm、约1.7mm至4mm、约2mm至4mm、约2.2mm至4mm、约2.5mm至4mm、约3mm至4mm、约1mm至3mm、约1mm至2.5mm、约1mm至2.2mm、约1mm至2mm、约1.5mm至3mm、约2mm至3mm、或约2mm至2.5mm。

在各种实施例中,光学掩膜308可一体形成于光学结构300中。在各种其他实施例中,光学结构300可被配置为可移除地接收光学掩膜308,也就是说,光学结构300的光学掩膜308为可更换的,使得具有期望结构的适当或合适的光学掩膜可被选择且被插入/加载至光学结构300。举例来说,如图3和图4所示,芯片304为Omega芯片,因此选择了具体用于引导来自Omega芯片的光的光学掩膜。本领域技术人员应可理解的是,可具体地分别为不同类型的芯片(例如,基于上述芯片上的井的布置/配置)配置不同的光学掩膜。因此,本发明不限定芯片304为Omega芯片,且光学掩膜308上的孔310的配置也不限于如图3B和4B中所示的配置,也就是说,各种类型的微流体芯片及各种配置的光学掩膜也在本发明的范围内。然而,为了清楚而非限制的目的,除非另有说明,Omega芯片及相应的光学掩膜在本文中被描述且应用在各种示例中。

如图4A和4B所示,光学结构300可为矩形块构件,且开口302可位于光学结构300的顶部表面部分及侧表面部分,该顶部表面部分用于接收芯片304,而该侧表面部分用于将接收于其中的芯片304暴露于来自光源的光。开口302的尺寸可基于待接收于其中的芯片304的尺寸被适当地配置,如图4A及4B所示。

图6显示根据本发明各种实施例的光学光检测系统600的示意图。光学光检测系统600包括如前所述的光学结构300,参照图3及图4,该光学结构300用于接收芯片304于其中;被配置为朝向光学结构300发射光的光源610;以及被配置为检测来自接收有流体样品芯片304的多个井306中的每一个的光信号的检测器414。光学结构300的光学掩膜308包括多个孔310,当芯片304被接收于开口302中时,响应于来自光源610的光(例如激发光),多个孔310用于将分别来自多个井306的该些光信号接收及引导至检测器414。此外,如上文所述,多个孔310中的每一个被配置为使得该孔310的中心轴312与来自对应的井306至检测器414处的靶点416的光信号的轨迹线对准。举例来说,如图4B中所示,光学掩膜308可用于将来自井306的光信号引导至检测器414处的靶点416。此有利于使得光源610、光学结构300及检测器414被设置成大致沿着同一轴线(common axis),也就是说,被设为具有从光源610至检测器414的直接光路,且有利地,可不使用透镜(沿着光源610及检测器414的间的光路)。该直接光路配置有利于使沿着光路的光信号损失最小化,从而改善检测器414对光信号的检测及导致显著较小的占用面积(例如,相较于如图2中所示的反射光路结构)。在各种实施例中,光源610及光学结构300之间的光路可被称作照射路径,而光学结构300及检测器414之间的光路可被称作检测或成像路径。

光源610被配置/布置为向芯片304的多个井306提供光(例如激发光)。在各种实施例中,光源610包括多个发光组件,每个发光组件用于发射光以照射/照明芯片304的对应的井306。图7显示包括多个单独的LED光源612的光源610的示意图,根据示例性实施例,其中每个LED光源612用于提供激发光至芯片304的对应的/相应的井306。在该示例性实施例中,提供及布置十个单独的LED光源612以分别照射芯片304的十个井306,如图3A和4A中所示。应可理解的是,LED光源612的数量及配置可基于要被照射的芯片的井的数量及配置被适当地修改/改变。单独的LED光源612有利地最小化光源所占据的空间(因而实现较小的占用面积)及最小化/减少系统中光学组件的使用。举例来说,传统上,使用单个大光源来提供覆盖整个芯片的光,然而,这样的大光源占据显著空间,且也需要大尺寸单透镜以将光传送至芯片。单独的LED光源612的使用也有利地使每个LED光源能够被单独地配置/调整,而使得由所有单独的LED光源612发射至对应的井的光的光强度大致相同,此可进一步提高检测或测量准确性(即,最小化由于激发光源的差异而造成来自不同井的光信号的结果的差异)。举例来说,已经发现,尽管是施加相同的电流输入到LED光源612,但每个LED光源612可以具有不同的发光效率且可以发射不同的光强度。因此,根据本发明各种实施例,每个LED光源612的强度可被调整至相同或基本上相同的水平。

在各种实施例中,在光学光检测系统600中提供一个或多个遮光部件以改善检测/测量结果,例如可消除或最小化外部/背景噪声干扰沿着光路传播至检测器414的光信号。举例来说,强背景噪声可以来自透镜表面的反射、金属特征、LED背光以及聚合物自发荧光。在各种实施例中,光学光检测系统600还包括布置在检测器414及光学结构300之间的遮光部件620,其用于包围光学结构300的一侧的多个孔310,以防止或最小化外部噪声影响沿着检测路径传播的光信号。

仅用于说明的目的,图8A和8B显示在检测器414及光学结构300之间的遮光部件620的示例配置的图像。如图8A和8B中所示,遮光部件620被布置为贴近光学结构300,用于包围/围绕光学结构300的一侧的(面向检测器414)的多个孔310。特别地,如图8B所示,遮光部件620被布置为搁置在光学结构300的侧表面(面向检测器414)上,而使得遮光部件620能够完全地包围/围绕孔310及防止或最小化外部/背景噪声影响沿着检测路径传播的光信号。在图8A和8B的示例性实施例中,遮光部件620被配置为圆柱形形状,以包围孔310。然而,本领域技术人员应可理解的是,在不偏离本发明的范围的情况下,遮光部件720可以被配置为适当或期望的各种其他形状。

根据各种实施例,光学光检测系统600还包括另一个(第二)遮光部件622,其被布置于光源610及光学结构300之间。仅用于说明目的,图8B和8C显示光源610及光学结构300(在图8C中被挡住)之间的第二遮光部件622的示例布置的图像。特别地,在光源610及光学结构300之间存在空间,用于使从光源610发射的光传播至光学结构300(即沿着照射路径),且第二遮光部件622是被定位在这样的空间上,以防止或最小化外部/背景噪声干扰沿着照射路径传播的光。在图8B和8C的示例性实施例中,第二遮光部件622被配置为具有矩形形状的平面构件。然而,本领域技术人员应可理解的是,在不偏离本发明的范围的情况下,第二遮光部件622可以被配置为适当或期望的各种其他形状。在各种实施例中,遮光部件620(第一遮光部件)及第二遮光部件622两者可被漆成/涂成黑色,以更好地吸收或最小化外部/背景噪声。举例来说,遮光部件620及第二遮光部件622可由能够阻挡光穿过的固体或刚性材料所制成,例如但不限于,金属(例如铝、不锈钢或铜)或塑料材料(例如黑色聚(甲基丙烯酸甲酯)(PMMA))。

为了使本发明可容易理解并付诸实践,下文中将仅以示例而非限定的方式来描述本发明各种实施例。然而,本领域技术人员应可理解的是,本发明可以以各种不同的形式/配置来实施且不应当被解释为限于下文中将叙述的示例性实施例。相反地,提供这些示例性实施例可使得本公开为彻底且完整的,并可向本领域技术人员充分地传达本发明的范围。

图9显示根据本发明示例性实施例的光学光检测系统900的示意图,以及仅用于说明目的的该光学光检测系统900的对应的图像。光学光检测系统900在示例性实施例中被配置为荧光检测系统,并包括用于提供激发光的光源610,用于选择来自光源610的光的激发波长以产生激发光束的激发滤光器910,以及根据本发明各种实施例的如上文所述的光学结构300,其用于将芯片304接收/保持于其中,而使得激发光照射至芯片304的井(其中含有流体样品)上及来自井的光信号(荧光信号)被引导至检测器414。光学光检测系统900还包括发射滤光器914,其用于过滤来自光学结构300的光信号的激发波长以产生荧光信号,以及检测器(相机)414,其包括光学透镜916,用于检测/感测光信号。如图所示,在示例性实施例中,光学光检测系统1000的组件有利地被设置成大致沿着同一轴线,此有利于使得光学光检测系统900具有由光源610至检测器414的直接光路配置。

在示例性实施例中,光源610包括如图7中所示的多个LED光源,每一个LED光源都用于提供激发光至芯片304的对应的/相应的井306。举例来说,每个LED光源可用于发射蓝色光。检测器414可为任何在本领域中已知的成像/感测装置,例如相机,其能够感测光信号。此外,为了更好的结果及准确度,优选高分辨率检测器。仅作为示例而非限定,检测器414可以是从加拿大Qlmaging获得的Retiga EXi CCD相机或从加拿大列治文市(Richmond BC)的Point Grey Research Inc.获得的基于Grasshopper2CCD的红-绿-蓝(RGB)相机,其包括美国新泽西州的Edmund Optics获得的25mm焦距透镜。可以基于本领域已知的各种程序/技术来分析/处理由检测器414检测到的光信号,以提供与芯片304中的流体样品有关的各种输出/结果,并且不需要在本文中详细描述。也就是说,由检测器/相机414捕获的图像可由计算机可执行的程序处理而根据需要产生各种输出/结果,举例来说,可使用来自美国麻萨诸塞州的Mathworks Inc.的Matlab图像采集工具箱的定制化图像分析软件,而该可执行的程序可由计算机处理器执行并进行图像分析。作为示例而非限定,由32位高分辨率图像处理器执行的基于LabVIEW VisionTM的图像处理源代码可被用于裁剪目标区域(ROI),且在灰阶转换(grey-scale conversion)下将ROI转换成二进制数据,并且计算每个像素的平均值。此外,与每个井相关的数值可表示来自分子信标与样品杂交的平均强度。通过将此数值与分子信标背景的预设阀值进行比较,使用本光学光检测系统可非常快速地得到阳性/阴性的分析结果,根据所进行的各种实验,例如可在8秒以内。

各种分子检测/诊断技术(例如,基于PCR)为本领域所公知的,因此不需要在此详细描述。特别地,本发明实施例是针对用于检测来自微流体(或纳米流体)芯片的光信号(例如荧光或比色光信号)的光学结构300及光学光检测系统600,可用于分子生物学领域中的各种用途,例如在如图1中所示的样品的样本到结果诊断的终点检测阶段。因此,没有必要描述本领域中存在的各种分子检测/诊断技术,例如取得在微流体芯片中待分析或测试的流体样品的各种技术。也就是说,光学结构300及光学光检测系统600可在各种目的的应用中被使用或实现,只要其涉及检测来自微流体芯片的光信号,更具体地说,是用于检测加载于微流体芯片中的流体样品中的靶分子。

举例来说,PCR是针对各种应用(例如食品安全测试、环境监测、及癌症和传染病(例如耐甲氧西林金黄色葡萄球菌(MRSA))诊断的核酸扩增和基因检测的发展良好的方法。如上所述,可使用微流体芯片304来加载待分析或测试的流体样品。微流体芯片304可提供许多优点,例如快速操作、样品体积小、容易将样品转移到分析阶段、在多个井中进行平行扩增。举例来说,如图3A和4A中所示,微流体芯片304(即Omega芯片),该微流体芯片包括多个井306,每个井包括开口以用作该井的入口及出口,其中每个开口与公共流体通道309流体连通,其中每个开口通过隔离通道(连接井与公共流体通道的通道)连接公共流体通道309,且其中多个井以径向对称图案的方式被布置于芯片304上。井可具有适合容纳反应混合物的形状,例如球形、立方体或球状物(bulb)。流体(例如液体)由公共流体通道进入井306,举例来说,由公共流体通道可以顺序地进入井,而使得流体可以沿着流体流动的方向完全地填充连接到公共流体通道的第一井,并从第一井溢流到公共流体通道以填充下一个井。如上所述,每个井可包括能够与靶分子形成反应产物的检测探针,该反应产物可发出如上所述的光学光检测系统600可检测到的信号,例如通过在多个井上照射光。可以观察到的是,连接多个井的公共流体信道基本上形成”Ω”的形状,因此如图3A及4A中所示的微流体芯片304可被称作”Omega芯片”。本文中所使用的术语”芯片”是指通常包括微流体装置的基底,且该微流体装置包括多个通道及腔,其可以或可以不彼此连接。Omega芯片的更多细节可参见国际专利申请号PCT/SG2015/050054,且该专利的全部内容通过引用并入本文,为了如前面所述的所有目的。

术语“检测探针”通常是指能够结合靶分子的分子,且可包括固定到支持物(例如表面、膜或颗粒)上的探针分子或未固定到支持物上的探针分子。检测探针可以能够结合至少一分部靶分子,例如靶核酸的特定序列,通过共价键、氢键、静电键结合或其他吸引力的相互作用(attractive interactions),以形成反应产物。反应产物可以发出可由检测装置检测到的信号,以检测到靶分子的存在,或者在没有形成反应产物的情况下,检测到不存在靶分子。在一个示例中,检测探针可为蛋白质,其可与同样是蛋白质的靶分子相结合,因此,本示例中的结合是通过蛋白质与蛋白质交互作用于进行检测,例如蛋白质结构中的构象变化(conformational change)。在另一示例中,检测探针可为核酸,其可与同样为核酸的靶分子相结合,因此,本示例中的结合是通过杂交以检测,例如靶核酸的存在或不存在,或者核酸中单核苷酸突变(single nucleotide mutation)的存在。

加载到微流体芯片304中的流体或液体样品可以是包含靶分子或可能包含靶分子的来源或溶液。包括可能的靶来源的来源可以是生物样品,例如取自受试者的脸颊拭子(cheek swab),以检测特定基因的存在或不存在。本文中所使用的术语”靶核酸”是指包含可以结合于检测探针的互补区的序列区的核酸序列。靶核酸序列可以被扩增,且当与检测探针的互补区杂交时,可以检测靶核酸的存在或不存在及靶核酸的定量。本文中所使用的术语”杂交”是指两个完全或部分互补的单核酸链以反平行取向(antiparallel orientation)聚在一起而形成具有双链区的稳定结构的能力。此双链结构的两个构成链,有时被称为杂合体(hybrid),与氢键结合在一起。尽管这些氢键最通常在单核酸链上包含碱基腺嘌呤和胸腺嘧啶或尿嘧啶(A和T或U)或胞嘧啶和鸟嘌呤(C和G)的核苷酸之间形成,但碱基配对也可以在非“规范(canonical)”对的组员的碱基之间形成。非规范碱基配对在本领域中是公知的,例如,参见“The Biochemistry of the Nucleic Acids”(Adams et al.,eds.,1992)。

检测探针可以连接到检测装置,例如标记,以测量靶与检测探针的杂交。标记可以为放射性同位素或荧光团。在一个示例中,每个检测探针可与不同的荧光团结合,而使得不同的探针可被区分。

在一个示例中,检测探针包括DNA或RNA。在其他示例中,检测探针包括具有能够与样品多核苷酸的区域形成双链复合物的发夹环(hairpin loop)结构的单链多核苷酸。在一个示例中,检测探针可以是包括荧光团及焠灭剂(quencher)的引物(primer)或分子信标(MB)探针。在一个示例中,MB探针在使用前不需要任何进一步的修饰。在另一示例中,检测检定法(detection assay)不需要额外的单价或二价盐或添加物,例如牛血清蛋白(BSA)。在不存在靶分子的情况下,MB探针保持稳定的发夹构象(conformation),使得来自荧光团的荧光由于多核苷酸端的荧光团和多核苷酸另一端的焠灭剂的接近而被完全焠灭。举例来说,在MB探针的5'端的羧基荧光素(Fam)荧光团或Rox荧光团及在3'端的Dabsyl的接近可焠灭任何荧光。在靶分子存在的情况下,探针的一部分可与靶分子的互补序列杂交,导致荧光团和焠灭剂的分离,随后导致从荧光团发射荧光。可以使用的荧光染料的其他示例包括SYBR Green I、Eva Green及LG Green。

在一个示例中,靶分子包括DNA或RNA。在一个示例中,靶分子包括目标基因(gene of interest)。在一个示例中,目标基因可以是对抗病毒或抗菌治疗(例如使用或多种抗生素的治疗)具有耐药性的基因。在另一示例中,目标基因可为细菌及病毒基因。在具体示例中,目标基因与人副流感病毒(HPIV),例如HPIV1及HPIV2,相关。在另一特定示例中,目标基因为大肠杆菌质粒DNA(E.coli plasmid DNAs)。

在一个示例中,检测探针与靶分子的间的反应在室温下(例如约30℃)基本上是瞬时的,目标靶分子可与相应的检测探针杂交,其中在30℃的最佳温度下可发射信号且只有很小的噪声。在另一示例中,不需要任何探针及靶的培养(incubation)而可产生反应产物,且在可能的反应之前或之后也不需要任何冲洗。

在一个示例中,靶分子是扩增反应的反应产物。扩增反应通过模板依赖性过程(template-dependent process)使得核酸分子的浓度相对于其初始浓度而增加。术语“模板依赖性过程”是指涉及引物分子的模板依赖性延伸的过程。扩增方法包括但不限于聚合酶链式反应(PCR)、DNA连接酶链式反应及本领域技术人员所熟知的其他扩增反应。扩增反应的组分包括用于扩增靶核酸的试剂,例如扩增引物、多核苷酸模板、三磷酸脱氧核糖核苷酸(deoxyribonucleotide triphosphate)、聚合酶及核苷酸。在具体示例中,靶分子是等温聚合酶链式反应的反应产物。

仅用于说明目的,图10A至10E显示了加载于相应微流体芯片304中并由检测器414所检测的各种流体样品(分别具有耐药基因组(gene panels)MRSA 339/07、MSSA 02/09、MUCH16/09、MRSA 23/01及无模板对照(NTC))发出的荧光信号的图像。附图显示了对上述不同耐药基因组的检测,其中每种细菌菌株具有其自身的抗性基因谱(profile)。从荧光阳性/阴性结果,因此可以确定来自患者的细菌感染的种类/类型。

进行实验以测试上述参照图9及现在将描述的本光学光检测系统的一致性及可靠性。在实验中,使用在每个井中加载的具有异硫氰酸荧光素(FITC)染料的Omega芯片(如图3A及4A所示)。在第一实验中,通过连续执行用于捕获及分析的软件10次以及置于光学结构300中的芯片来检查捕获变化(即每个相机捕获光信号之间的变化)的相机。进行此实验以测试从相机信号至二进制图像的图像转换过程的稳定性,以及裁剪软件和像素计算。结果显示于图11A中,证明了每个相机捕获的变化在约0.1%至0.4%之间。在第二实验中,通过将加载有染料的芯片插入载具并从载具取出10次来测试芯片插入偏移的变化,以测试芯片对准特性的稳定性及与芯片错位(misplacement)相关的人为错误的影响。结果显示于图11B中,证明了芯片插入偏移的变化约0.2%至1.9%。这两项研究结果均表明,本光学光检测系统的荧光检测功能强大(robust),且硬件机械特性及软件分析程序的变化极小。

系列稀释FITC样品的读数将给出关于系统的灵敏度及检测极限的指导。在这方面,图12显示分别使用手动(即图2的常规检测系统)及自动(本检测系统600)荧光检测系统所拍摄的图像,来用于比较/验证。具体而言,图12中的顶部行显示了由图2的常规检测系统所得到结果的五个图像,而图12中的底部行显示了由本文所述的本检测系统600所得的结果的五个图像,其用于正在测试的荧光团的五个不同的系列稀释的浓度。原始浓度为1.0时仿真阳性杂交结果的荧光强度,而稀释浓度为0.25时则模拟分子信标的背景强度。本检测系统600的检测范围涵盖了在Omega芯片上的多重诊断的应用。由图12可以观察到本检测系统600具有比常规荧光检测系统200明显更好的灵敏度性能,举例来说,检测系统600能够检测0.25及更低的浓度,然而常规检测系统仅能够达到0.25的最小浓度。

图13显示芯片304的每个井的系列稀释FITC样品的线性图。具体而言,在图13中,是将来自每个井(井1至井10)的光强度的读数对系列稀释的浓度作图。此校准对于验证来自每井的信号是可重复及线性的非常重要。在图13中,这种系列稀释的线性显示且验证了通过计算在每个井上所表现的光强度可实现定量分析。

在另一实验中,使用来自鼻腔拭子(nasal swab)的临床样品且通过本光学光检测系统600来测试MSRA 2301、MRSA S205及无模板对照(NTC)的关系。图14显示使用本光学检测系统600在分别使用具有耐药基因组(gene panels)MRSA 2301、S205及无模板对照(NTC)的实际样品的测试中所检测的荧光信号,且图14中也示出了显示光信号的检测结果的示例性用户界面1410。举例来说,该用户界面可以使用LabVIEWTM programming来编程。具体而言,图14显示由相机所捕获的实际荧光图像1412,例如,荧光读数可以通过图像处理转换为范围从0至255的数值并且被显示。结果显示,信号水平均显著高于其背景,而NTC的芯片则全部显示阴性及低荧光信号。因此,图14显示三个测试芯片(MRSA 2301、MRSA S205及NTC)均显示强信号及低背景噪声。

整合的自动化图像处理系统具有减少手动对准步骤以最小化人为错误、缩短样本到结果的时间、以及最小化读数变化以给出一致的信号读数的优点。由此,本发明实施例提供一种用于来自微流体芯片(特别是Omega芯片)的光信号的自动化光学检测系统,包括可在PCR扩增后对包含有多个抗性基因的靶的微流体芯片进行信号分析。因此,本光学系统可提供快速且节省成本的检测,并有利于大量生产。各种优点还包括:圆柱形块体及光学掩膜可良好地工作以消除背景噪声、无透镜的光学结构设计便于大量生产、双锥形光学特性可达到优异的SNR、过程由11个步骤简化至3个步骤、完全自动化的系统以最小化人为错误、在插入Omega芯片之后将样本到结果分析从需要数小时缩短至8秒。

在各种实施例中,光学光检测系统600还包括如图15A及15B中所示的外部外壳或壳体1510,其用于将如图9所示的光学结构300、光源610及检测器414封闭/容纳于其中。举例来说,如图所示,外部壳体1510具有开口1514,该开口1514具有可调盖1516(例如可滑动),所述可调盖1516在打开位置(例如,可允许将芯片304插入光学结构300的开口302中,参见图15B)及关闭位置(例如,可关闭开口1514以防止/最小化外部噪声(例如光)干扰检测系统600对来自芯片304的光信号的检测,参见图15A)之间可调。

图16显示制造光学结构300的方法1600的框图。该方法包括:步骤1602,在结构中形成开口,所述开口用于接收芯片,所述芯片包括多个井,所述多个井用于接收待分析的流体样品于其中;以及步骤1604,形成包括多个孔的光学掩膜,且将该光学掩膜定位成贴近所述开口,使得当所述芯片被所述开口接收时,所述光学掩膜面向所述芯片,其中所述多个孔被配置为延伸穿过所述光学掩膜,以接收及引导分别来自所述多个井的光。在各种实施例中,光学结构300及光学掩膜308可由固体或刚性材料所制成,例如但不限于,金属(例如铝、不锈钢或铜)或塑料材料(例如黑色(聚甲基丙烯酸甲酯)(PMMA))。举例来说,光学结构300和/或光学掩膜308可利用PolyJet 3D打印机制造,以实现优化焦距的快速验证。

图17显示组装光学光检测系统600的方法1700的框图。该方法包括:步骤1702,提供如本文所述根据本发明各种实施例的光学结构,以收接收芯片于其中,所述芯片包括多个井,所述多个井用于接收待分析的流体样品于其中;步骤1704,提供被配置为朝向所述光学结构发射光的光源;以及步骤1706,提供检测器,用于检测来自被保持于所述光学结构中的所述芯片的光信号(例如,从所述芯片的多个井中的每一个中的流体样品所发出的光信号)。具体而言,所述光源、所述光学结构及所述检测器被组装成大致沿着同一轴线,以有利地提供从光源至检测器的直接光路。

还应了解,在本说明书中,所使用到的例如”顶部”、”底部”、”基部”、”下”、”侧向”、”向下”等的任何术语是为了方便而使用并有助于理解相对位置或方向,而非旨在限制本文所述的部件或结构的定向。

尽管已经参考具体实施例具体示出和描述了本发明的实施例,但是本领域技术人员应该理解,可以在不脱离由所附权利要求限定的本发明的精神和范围的情况下,对其进行形式和细节上的各种改变。因此,本发明的范围由所附权利要求表示,并且因此旨在涵盖落入权利要求的等同物的含义和范围内的所有变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1