用于电感式位移传感器特别是用于触摸板的检测器电路的制作方法

文档序号:11175109阅读:526来源:国知局
用于电感式位移传感器特别是用于触摸板的检测器电路的制造方法与工艺

本发明涉及一种用于电感式位移传感器的检测器电路。



背景技术:

这种传感器例如用于检测游泳者对被称为触摸板的用于游泳比赛的计时系统的板的压力。该类型的板被固定到游泳池的终点壁上,并且游泳者对触摸板的压力使得板更靠近壁。当传感器检测到该靠近运动时,测量游泳者时间的计时器停止或记录中间时间。

电感式位移传感器通常包括由检测器电路提供的高频交流电流激励的线圈。导电或铁磁的部分与线圈的接近导致在由线圈、部分和将它们分开的空气间隙形成的磁路内的损耗,或/和改变线圈的电感。电路中的损耗的测量或该电感中的变化的测量因此允许识别出部分相对于线圈的位移。

该类型的检测器电路的缺点在于在那里电流持续被消耗。因此,需要一种较低消耗的检测器电路,其允许指示已超过磁路中的损耗阈值或其电感(阈值对应于例如游泳者对触摸板的压力)。



技术实现要素:

本发明的目的是响应上面提出的需要。

为此,本发明涉及一种用于检测电感式位移传感器的磁路的电感变化的电路,其中检测器电路包括:

·第一触发器(flipflop),其被布置为提供第一信号以将线圈充电到阈值电流,该第一信号包括具有必要的和足够的持续时间的电压脉冲,其中第一信号被施加到线圈的第一端子;

·脉冲发生器,其被配置为提供包括参考脉冲的参考信号;

·时钟信号发生器,其被布置为周期性地并且同时地触发充电脉冲和参考脉冲;

·第二触发器,其被布置为生成在参考脉冲的后沿上取得第一信号的状态的输出信号。

在已知的方式中,电感式位移传感器,更确切地说,可变电感的位移传感器包括集成线圈的固定铁磁部分。当相对于固定部分可移动的铁磁部分靠近固定部分放置时,包括与空气间隙串联的固定部分和可移动部分的磁路闭合。磁路的磁阻等于由固定(f)部分、可移动(m)部分和空气间隙(e)形成的段(segment)的磁阻之和,即lf/μ0μfsf+lm/μ0μmsm+le/μ0se,,其中l表示磁路段的长度,μ为其相对磁导率,s为其截面,并且μ0为真空的磁导率。因此可以理解,磁路的磁阻与空气间隙的长度(即可移动部分和固定部分之间的间距)成比例地变化。空气间隙越短,磁路的磁阻越低,而线圈的电感越高。

根据本发明并且与现有技术的实践相反,线圈不被高频交流电流激励,而是由充电脉冲串激励。更确切地说,通过第一触发器bd1周期性地向放置在可变磁阻磁路中的线圈施加电压。在将该电压施加到线圈的时刻,线圈中的电流以给定的速率开始增加,其中表示磁路的磁阻,u表示施加的电压,并且n表示线圈匝数。

电感越高,达到固定电流值所需的充电脉冲的持续时间将越长,反之亦然。

充电脉冲的循环比基本上小于1%,并且允许获得具有低能量消耗的传感器。每个充电脉冲表示小于1纳焦的功耗,即小于10微瓦的消耗。因此,限制了触摸板上的传感器组件的消耗。此外,假设这些充电脉冲以大于10000赫兹的频率重复,可以获得具有小于100微秒的延时(latency)的传感器。

第二触发器bd2用作参考脉冲的持续时间和充电脉冲的持续时间之间的比较器。如果电感低,则充电脉冲在参考脉冲的后沿处终止。相反,如果电感高,则充电脉冲仍然在参考脉冲的后沿上进行。因此,检测器电路使得能够提供指示电感是否高于阈值的输出信号。

此外,根据本发明的检测器电路可以以在所有技术上可能的组合的形式包括以下特征中的一个或多个。

在非限制性实施例中,检测器电路包括比较器,其被布置并配置为提供第三信号,该第三信号在线圈的第二端子处观察到的第二信号超过第一比较阈值时改变状态,第一触发器被布置成使得所述状态的改变导致充电脉冲的终止。

在非限制性实施例中,第一触发器是包括下列项的触发器:

·受到时钟信号控制的第一异步输入set;

·受到第三信号控制的第二异步输入clear。

在非限制性实施例中,检测器电路包括在线圈的第二端子和检测器电路的地线之间形成分路(branch)的电阻器。

在非限制性实施例中,比较器是具有受到第二信号控制的输入的施密特触发器。

在非限制性实施例中,脉冲发生器被布置并配置为使得输出信号的状态中的一个状态导致参考脉冲的初始持续时间的减小,并且另一状态导致参考脉冲返回到其初始持续时间。

在非限制性实施例中,脉冲发生器包括:

·受到时钟脉冲控制的第一异步输入trig;

·受到输出信号控制的第二输入。

在非限制性实施例中,第二触发器是d触发器,其包括:

·受到第一信号控制的第一同步输入d;

·受到参考信号控制的第二输入clk。

附图说明

其他特征和优点将从通过参考附图以非限制性示例的方式给出的以下描述而变得清楚:

图1示出了用于检测连接到所述线圈的端子的线圈的电感变化的电路;

图2示出了表示在检测器电路的不同点处观察到的几个信号的时间演进的时序图。

具体实施方式

图1示出了根据本发明的检测器电路cd。检测器电路cd能够根据可变电感线圈bn的电感lx生成二进制输出信号u5,其中所述线圈bn形成电感式位移传感器cp的一部分。更确切地,检测器电路cd使得如果电感lx高于第一电感阈值lon,则将输出信号u5设为高值,而如果电感lx低于第二电感阈值lon-dl,则将输出信号u5设为低值。

检测器电路cd具有能够生成时钟信号u0的时钟信号发生器gh。将时钟信号u0的频率选择为传感器的期望延时的倒数。例如,如果需要具有100微秒延时的传感器,则将时钟信号选择为处于10千赫的频率。事实上,如下面将要说明的,时钟信号u0的每个行程(stroke)触发系统的询问(interrogation),这潜在地导致电感lx的变化的检测。

此外,检测器电路cd包括被称为bd1的第一触发器(例如但不必须是d触发器或sr触发器),其能够根据时钟信号u0和第三二进制信号u3生成第一二进制信号u1。更确切地说,时钟信号u0被施加到由下降沿触发的第一触发器bd1的第一异步输入set,并且第三信号u3被施加到第一触发器bd1的第二异步输入clear,其也由下降沿触发。因此,当时钟信号u0转变为低状态时,第一信号u1转变为高状态,启动充电脉冲,而当第三信号u3转变为低状态时,第一信号u1转变为低状态,终止充电脉冲。线圈bn的第一端子受到第一信号u1的控制。

此外,检测器电路cd具有在线圈bn的第二端子和检测器电路cd的地线之间连接的电阻器rs。在线圈bn的第二端子上观察到的信号被称为第二信号u2。第二信号u2表示在电阻器rs的端子处的电压,并且与线圈bn中的电流成比例。

此外,检测器电路cd具有施密特触发器st,其也被称为阈值触发器或施密特触发电路(trigger),其能够生成作为第二信号u2的函数的第三信号u3。更确切地说,施密特触发器st将第二信号u2与第一比较阈值se1和第二比较阈值se2进行比较。当第二信号u2变为大于第一比较阈值se1时,第三信号u3转变为低状态并经由异步输入clear终止对处于低状态的信号u1重新初始化的充电脉冲;当第二信号u2变得小于第二比较阈值se2时,第三信号u3转变为高状态,而对信号u1没有任何影响。

此外,检测器电路cd具有矩形脉冲发生器gp,其能够生成参考信号u4,该参考信号u4具有作为时钟信号u0和输出信号u5的函数的参考脉冲ip4。更确切地说,时钟信号u0被施加到由下降沿触发的发生器gp的第一异步输入trig,使得当时钟信号u0转变为低状态时,参考信号u4同样转变为低状态一段预定义的持续时间以便形成参考脉冲ip4。如下面将解释的,输出信号u5被用于可能地修改参考脉冲ip4的持续时间。作为用于位移传感器cp的期望的检测阈值的函数的预定义的初始持续时间tpw4被分配给参考脉冲ip4,但是作为输出信号u5的状态的函数,参考脉冲ip4的该持续时间可能被缩短持续时间dpw。更确切地说,如果输出信号u5在时钟信号u0的下降沿处于低状态,则参考脉冲ip4具有预定义的初始持续时间tpw4。另一方面,如果输出信号u5在时钟信号u0的下降沿处于高状态,则参考脉冲ip4具有持续时间tpw4-dpw。

为了调节持续时间tpw4从而同样地调节传感器的检测阈值,检测器电路cd具有连接到脉冲发生器gp的输入端的调节元件er。这例如是具有可变容量或者同样具有待编程的数字计数器的输出值的电阻器。

此外,检测器电路cd还具有类型d的被称为bd2的第二触发器,其例如能够生成作为第一信号u1和参考信号u4的函数的输出信号u5。更确切地说,第一信号u1被施加到第二触发器bd2的同步输入d,并且参考信号u4被施加到第二触发器bd2的时钟输入clk,该第二触发器bd2对输入d进行采样。因此,在参考信号u4的上升沿,将输出信号u5设为第一信号u1的值,并且当第三信号u3转变为低状态时,第一信号u1同样转变为低状态。在bd2的输入d上的新的u1值将在下一个参考脉冲ip4处在u5上可见。

为了帮助理解电路的操作,在图2中在时间上表示信号u1至u5。最初,线圈bn的电感lx高于第一电感阈值lon。然后,在时钟信号u0的第一下降沿fd1和第二下降沿fd2之间,线圈bn的电感lx变得小于第二电感阈值lon-dl。让我们假设时钟信号u0和参考信号u4初始处于高状态,并且第一信号u1和第二信号u2初始处于低状态,第二信号u2将u3设定为高状态。此外,让我们假设输出信号u5初始处于低状态。所有这些初始状态可以在检测器装置启动时容易地设定。

在时钟信号u0的第一下降沿fd1上,第一信号u1从低状态转变为高状态。然后经受电压阶跃的线圈bn被充电,并且如第二信号u2所示,电阻器rs的端子处的电压增加。当电阻器rs的端子处的电压增加并且达到第一比较阈值se1时,第三信号u3从高状态转变为低状态。当转变为低状态时,第三信号u3触发第一信号u1从高状态到低状态的转变。然后线圈bn放电,并且电阻器rs的端子处的电压再次减小到零,如示出第二信号u2的时序图所示。当电阻器rs的端子处的电压减小并达到第二比较阈值se2时,第三信号u3从低状态转变为高状态,而对信号u1没有任何影响。第一信号u1和第二信号u2然后返回到其初始的低值,而第三信号u3返回到其初始的高值。

并行地,在时钟信号u0的第一下降沿fd1上,参考信号u4从高状态转变为低状态,然后在持续时间tpw4之后从低状态再次到高状态。当转变为高状态时,参考信号u4触发将第一信号u1重新复制到输出信号u5上。因此,由于线圈bn的电感lx最初为高,所以当参考信号u4在持续时间tpw4之后再次转变为高状态时,第一信号u1仍处于高状态。换句话说,第一信号u1的矩形脉冲的持续时间tpw1大于参考信号u4的矩形脉冲的持续时间tpw4。因此,输出信号u5从低状态转变为高状态。因此检测到电感的变化。如果传感器与触摸板相关联,则其检测到压力已经施加在触摸板上。

然后,第二时钟沿fd2使第一信号u1再次从低状态转变为高状态。同时,线圈bn的电感lx变得小于第二电感阈值lon-dl,线圈bn比以前更快地充电。因此,当参考信号u4在持续时间tpw4-dpw之后再次转变为高状态时,第一信号u1已经再次转变为低状态(应回想起先前提到的当输出信号u5在时钟信号u0的下降沿上处于高状态时,参考脉冲具有持续时间tpw4-dpw)。换句话说,第一信号u1的矩形脉冲的持续时间tpw1小于参考信号u4的矩形脉冲的持续时间tpw4-dpw。然后,输出信号u5从高状态转变为低状态。

注意,当输出信号u5处于高状态时缩短参考脉冲ip4的持续时间使得能够在电感lx高于第一电感阈值lon但是由于电路的电噪声和传感器的机械振动而随机波动以致偶尔超过该阈值lon的情况下确保输出电压u5的稳定性。由于参考脉冲ip4的缩短,可以防止输出电压u5由于这些波动而再次随机地转变为低状态。

当然,本发明不限于所示的示例,而是对于本领域技术人员显而易见的多种变型和修改是开放的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1