一种基于相控阵超声波探伤仪的闸门检测装置及检测方法与流程

文档序号:16853062发布日期:2019-02-12 22:54阅读:450来源:国知局
一种基于相控阵超声波探伤仪的闸门检测装置及检测方法与流程

本发明属于闸门检测技术领域,尤其涉及一种基于相控阵超声波探伤仪的闸门检测装置及检测方法。



背景技术:

闸门漏水是水工建筑物中比较常见的现象,大到大型水库、河闸,小到小水库、小涵闸,几乎无门不漏,于是大家有了“没有不漏水的闸门”的看法,导致对闸门漏水也习以为常,不够重视,然而闸门漏水造成的危害和损失,远远大于人们的一般想象,甚至危及水工建筑物和防洪安全。

目前国内外闸门漏水检测还是采用传统的巡视检查结合闸门外观状况检测来进行判断。通过巡视检查和外观状况检测,基本可以找出闸门漏水的原因,但是这一常规方法仍然存在诸多弊端,如位于水下的止水装置发生漏水,则很难检测出来,更无法确定漏水程度和具体的漏水位置,待检查人员发现漏水时,通常是漏水很严重,止水装置已经被破坏无法正常止水了,必须重新更换止水装置,将会给闸门的正常运行带来很大的损失。且船闸出现漏水则会影响闸室充放水时间,延长通航时间,降低通航效率,漏水严重需要进行维修时,需停航大修,影响正常通航,造成较大的经济损失。

针对上述问题,出现了多种多样的检测装置,如射线探伤、磁粉探伤等,由于射线探伤容易对人体造成伤害,而磁粉探伤和超声探伤效率较低并且又有污染,同时,现有检测装置的检测探头只有一个,检测效率低、检测精度低等。



技术实现要素:

目的:针对上述问题,本发明的主要目的在于提供一种基于相控阵超声波探伤仪的闸门检测装置及检测方法,解决现有技术中闸门检测装置,检测探头只有一个,检测效率低、检测精度低的技术问题。

技术方案:为解决上述技术问题,本发明采用的技术方案为:

一种基于相控阵超声波探伤仪的闸门检测装置,包括上位机和检测机构‘’所述检测机构包括支架,支架底部设置有一个导向轮和两个驱动轮,驱动轮通过第一电机驱动,支架上设置有控制器、超声波相控阵探伤仪。

所述支架上设置有转动平台,转动平台通过第二电机驱动,转动平台上沿水平方向设置有丝杠,丝杠通过第三电机驱动,丝杠上套设有滑块,滑块与丝杠螺纹连接;滑块上固定设置超声波相控阵矩阵探头,矩阵探头与超声波相控阵探伤仪通过导线连接。所述支架底部安装有两个超声波传感器,两个超声波传感器垂直设置,一个用于测量检测装置到闸门侧边的距离,另一个用于测量检测装置到闸门底部的距离。第一电机、第二电机、第三电机、两个超声波传感器和超声波相控阵探伤仪通过导线与控制器连接,控制器与上位机之间通过电缆连接,并采用串口通信;对检测装置进行了防水处理。

相控阵即相位补偿(或延时补偿)基阵,它既可用以接收,也可用以发射。其工作原理是对按一定规律排列的基阵阵元的信号均加以适当的移相(或延时)以获得阵波束的偏转,在不同方位上同时进行相位(或延时)补偿,即可获得多波束。超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。它为确定不连续性的形状、大小和方向提供出比单个或多个探头装置更大的能力。

该检测装置采用相控阵超声技术,检测效率高,检测精度高。

进一步改进,所述支架上开设有扇形通孔,转动平台的底座与第二电机的输出轴通过联轴器连接,转动平台通过轴承与支架转动连接;所述第二电机驱动转动平台转动,带动丝杠一起转动,丝杠位于扇形通孔上方,超声波相控阵矩阵探头位于扇形通孔中。

进一步改进,所述扇形通孔两个弧形侧壁的边缘均开设有弧形滑槽,丝杠的两端通过轴承与转臂转动连接,转臂固定在转动平台上;转臂上设置有两个滚轮,两个滚轮分别活动式卡设在对应的滑槽中,提高转臂转动的稳定性。

进一步改进,所述弧形滑槽两端和转臂的两端均设置有限位开关,限位开关与控制器之间电连接,防止滑块、转臂发生撞击,影响检测结果。

进一步改进,所述转臂上设置有滑杆,滑杆与丝杠平行设置,滑块上开设有通孔,滑块通过通孔活动式套设在滑杆上。提高结构稳定性,防止滑块在沿丝杠移动的过程中发生偏转等,而影响检测精度。

进一步改进,还包括清除机构,清除机构包括铲板和毛刷组件,其中铲板设置在支架前端,倾斜设置,用于铲除闸门上的污泥、苔藓,防止污泥、苔藓等对检测结果产生影响。

所述毛刷组件包括第四电机、转动轴、转盘和毛刷,第四电机固定设置在支架上,第四电机的输出轴通过联轴器与转动轴连接,转动轴的另一端与转盘固连,毛刷连接在转盘上,控制器控制第二电机驱动轴换底盘转动,使毛刷随转盘转动,对闸门表面进行刷洗。

进一步改进,所述铲板与支架铰接,铲板的上表面与一个弹簧的一端连接,铲板的下表面与一个弹簧的一端连接,两个弹簧的另一端均与支架连接,弹簧处于拉伸状态,起到缓冲作用。

进一步改进,所述驱动轮通过涡轮蜗杆驱动,涡轮蜗杆安装在壳体中,壳体固定在支架底部,第一电机的输出轴通过联轴器与蜗杆连接,涡轮的转轴两端伸出壳体后分别与对应的驱动轮连接。涡轮蜗杆组件,运行平稳,噪音低。

采用基于相控阵超声波探伤仪的闸门检测装置的检测方法,包括如下步骤:

步骤一、将闸门检测装置放置在待检测闸门的上端一个顶点处,通过两个超声波传感器测得机器人到闸门另一侧边的距离,和机器人到闸门底部的距离,即测得整个闸门的尺寸,并将该信息发给控制器,控制器中的计算模块以该顶点为坐标原点,以闸门的宽度方向为x轴,以闸门的高度方向为y轴,建立直角坐标系;

步骤二、控制器中的计算模块规划出检测装置的检测行走路线,并控制机器人按照设定的路线沿闸门高度方向逐层向上移动进行检测;在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪并检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。

与现有技术相比,本方案具有如下有益效果:

在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪并检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。该检测装置采用相控阵超声技术,检测效率高,检测精度高。

附图说明

图1为一实施例闸门检测装置的结构示意图;

图2为一实施例闸门监测装置的俯视图。

图中:1-支架,2-导向轮,3-第一电机,4-第二电机,5-转动平台,6-驱动轮,7-第三电机,8-超声波相控阵探伤仪,9-转臂,10-丝杠,11-滑块,12-铲板,13-弹簧,14-第四电机,15-转动轴,16-毛刷,17-超声波传感器,18-滑杆,19-滑槽。

具体实施方式

下面结合具体实施例对本发明作更进一步的说明。

实施例一:

如图1、图2所示,一种基于相控阵超声波探伤仪的闸门检测装置,包括上位机(图中未示出)和检测机构。所述检测机构包括支架1,支架底部设置有一个导向轮2和两个驱动轮6,驱动轮6通过第一电机3驱动,支架1上设置有控制器(图中未示出)和超声波相控阵探伤仪8。

所述支架1上设置有转动平台5,转动平台5通过第二电机4驱动,能够沿转动平台的中心轴转动,转动平台5上沿水平方向设置有丝杠10,丝杠10通过第三电机7驱动,丝杠10上套设有滑块11,滑块11与丝杠10螺纹连接;滑块11上固定设置超声波相控阵矩阵探头,矩阵探头与超声波相控阵探伤仪8通过导线连接。所述支架1底部安装有两个超声波传感器17,两个超声波传感器垂直设置,一个用于测量检测装置到闸门侧边的距离,另一测量检测装置到闸门底部的距离。第一电机3、第二电机4、第三电机7、两个超声波传感器17和超声波相控阵探伤仪8通过导线与控制器连接,控制器与上位机之间通过电缆连接,并采用串口通信;对检测装置进行了防水处理。

相控阵即相位补偿(或延时补偿)基阵,它既可用以接收,也可用以发射。其工作原理是对按一定规律排列的基阵阵元的信号均加以适当的移相(或延时)以获得阵波束的偏转,在不同方位上同时进行相位(或延时)补偿,即可获得多波束。超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。它为确定不连续性的形状、大小和方向提供出比单个或多个探头装置更大的能力。

该检测装置采用相控阵超声技术,检测效率高,检测精度高。

在本实施例中,还包括清除机构,清除机构包括铲板12和毛刷组件,其中铲板12设置在支架1前端,倾斜设置,用于铲除闸门上的污泥、苔藓,防止污泥、苔藓等对检测结果产生影响。

所述毛刷组件包括第四电机14、转动轴15、转盘和毛刷16,第四电机14固定设置在支架1上,第四电机14的输出轴通过联轴器与转动轴连接,转动轴的另一端与转盘固连,毛刷连接在转盘上,控制器控制第二电机驱动轴换底盘转动,使毛刷随转盘转动,对闸门表面进行刷洗。

在本实施例中,所述铲板12与支架1铰接,铲板的上表面与一个弹簧13的一端连接,铲板的下表面与一个弹簧的一端连接,两个弹簧的另一端均与支架连接,弹簧处于拉伸状态,起到缓冲作用。

在本实施例中,所述驱动轮6通过涡轮蜗杆驱动,涡轮蜗杆安装在壳体中,壳体固定在支架底部,第一电机的输出轴通过联轴器与蜗杆连接,涡轮的转轴两端伸出壳体后分别与对应的驱动轮连接。

如图2所示,在本实施例中,所述支架1上开设有扇形通孔,转动平台5的底座与第二电机4的输出轴通过联轴器连接,转动平台5通过轴承与支架1转动连接;所述第二电机4驱动转动平台5转动,带动丝杠10一起转动,丝杠10位于扇形通孔上方,超声波相控阵矩阵探头位于扇形通孔中。

在本实施例中,所述扇形通孔两个弧形侧壁的边缘均开设有弧形滑槽19,丝杠10的两端通过轴承与转臂9转动连接,转臂9固定在转动平台上;转臂9上设置有两个滚轮,两个滚轮分别活动式卡设在对应的滑槽19中,提高转臂转动的稳定性。

在本实施例中,所述弧形滑槽两端和转臂的两端均设置有限位开关(图中未示出),限位开关与控制器之间电连接,防止滑块、转臂发生撞击,影响检测结果。

在本实施例中,所述转臂上设置有滑杆18,滑杆18与丝杠10平行设置,滑块上开设有通孔,滑块通过通孔活动式套设在滑杆上。

实施例二:

采用基于相控阵超声波探伤仪的闸门检测装置的检测方法,包括如下步骤:

步骤一、将机器人放置在待检测闸门的上端一个顶点处,通过两个超声波传感器17测得机器人到闸门另一侧边的距离以及机器人到闸门底部的距离,即测得整个闸门的尺寸,并将该信息发给控制器,控制器中的计算模块以该顶点为坐标原点,以闸门的宽度方向为x轴,以闸门的高度方向为y轴,建立直角坐标系;

步骤二、控制器中的计算模块规划出检测装置的检测行走路线,并控制机器人按照设定的路线沿闸门高度方向逐层向上移动进行检测;在检测过程中,第二电机驱动转动平台转动,带动转臂在扇形通孔上方区域中转动;同时,第三电机驱动丝杠转动带动,带动滑块和超声波相控阵矩阵探头沿丝杠长度方向移动;即超声波相控阵矩阵探头在沿闸门宽度方向移动时,同时在一定角度内扫射,则同时可以对闸门进行大面积的检测;超声波相控阵探伤仪将检测信号传给控制器,控制器根据此时两个超声波传感器测得的数据,得出检测装置的具体位置,即缺陷的具体位置,并将缺陷信息和缺陷位置信息传递给上位机。

在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。

以上所述仅为本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和修饰,这些改进和修饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1