基于单质量块的三轴加速度计的制作方法

文档序号:24939561发布日期:2021-05-04 11:31阅读:84来源:国知局
基于单质量块的三轴加速度计的制作方法

【技术领域】

本发明涉及mems(micro-electro-mechanicalsystem)领域,尤其是涉及一种基于单质量块的三轴加速度计。



背景技术:

mems加速度计作为一种运动传感器被普遍应用,与常规的加速度计相比,具有体积小、重量轻、功耗小、成本低、可靠性好、易集成、过载能强、可批量生产等优点,现已成为加速度计的主要发展方向之一,可以广泛地运用于航空航天、汽车工业、工业自动化及机器人等领域。

常见的mems加速度计的工作原理是基于牛顿的经典力学,一般由敏感质量块、固定支架和检测电路三部分组成。质量块借助于一个或多个弹性元件附于固定支架上,当有外部加速度输入时,敏感质量块在惯性力的作用下发生位移,位移的变化大小和方向与输入加速度的大小和方向有着确定的对应关系,而该位移会引起某些相关物理量(电容、压力、电阻、谐振频率等)发生相应变化,故倘若能通过检测电路将这些物理量的变化转化为容易测量的电学量,比如电压、电流、频率等,就可以测得质量块位移变化的情况,从而间接获取待测加速度的信息。另外,根据测得的加速度,经过一次积分运算可得到敏感质量块的速度,经过二次积分运算就可得到敏感质量块运动的距离。

然而,目前常用的都是利用一个质量块来测量两个轴的加速度,即便有的可以利用一个质量块来测量三个轴的加速度,但是其中对于z轴的检测精度很低。

因此,有必要提供一种新的改进方案来克服上述问题。



技术实现要素:

本发明要解决的技术问题在于提供一种三轴加速度计,其基于一个质量块可以提供三个轴的高精度加速度检测。

为了解决上述问题,根据本发明的一个方面,本发明提供一种三轴加速度计,其包括:基板;固定设置于所述基板上的锚块;固定设置于所述基板上的第一x轴电极、第二x轴电极、第一y轴电极、第二y轴电极、第一z轴电极和第二z轴电极;悬置于所述基板上方的框架,其包括相对设置的第一梁柱和第二梁柱、连接第一梁柱和第二梁柱的连接梁,第一梁柱形成第三z轴电极,第二梁柱形成第四z轴电极,其中第一z轴电极和第三z轴电极相对设置以形成第一z轴电容,第二z轴电极和第四z轴电极相对设置以形成第二z轴电容;悬置于所述基板上方的质量块,所述质量块上形成有第三x轴电极和第三y轴电极,其中第一x轴电极和第三x轴电极相对设置以形成第一x轴电容,第二x轴电极和第三x轴电极相对设置以形成第二x轴电容,第一y轴电极和第三y轴电极相对设置以形成第一y轴电容,第二y轴电极和第三y轴电极相对设置以形成第二y轴电容;和弹性连接组件,被配置的弹性连接于所述锚块、所述连接梁以及所述质量块上。

在一个优选的实施例中,所述框架、所述质量块、所述弹性连接组件以及所述锚块一起形成质量块电极。

在一个优选的实施例中,在x轴上具有加速度时,所述弹性连接组件弹性形变,所述质量块沿x移动,第一x轴电极和第三x轴电极之间的间隙变化导致第一x轴电容变化,第二x轴电极和第三x轴电极之间的间隙变化导致第二x轴电容变化,第一x轴电容和第二x轴电容变化相反,通过检测所述第一x轴电容和第二x轴电容的变化差,进而检测得到x轴上的加速度,在y轴上具有加速度时,所述弹性连接组件弹性形变,所述质量块沿y移动,第一y轴电极和第三y轴电极之间的间隙变化导致第一y轴电容变化,第二y轴电极和第三y轴电极之间的间隙变化导致第二y轴电容变化,通过检测所述第一y轴电容和第二y轴电容的变化差,进而检测得到y轴上的加速度,在z轴上具有加速度时,所述弹性连接组件弹性形变,所述质量块沿z轴移动,带动所述框架转动,第一z轴电极和第三z轴电极之间的间隙变大或变小导致第一z轴电容变小或变大,第二z轴电极和第四z轴电极之间的间隙变小或变大导致第二z轴电容变大或变小,通过检测所述第一z轴电容和所述第二z轴电容的变化差,进而检测得到z轴上的加速度。

相对于现有技术,本发明的三轴加速度计只需要一个质量块,就可以实现三个轴的高精度加速度检测,尤其是可以对z轴提供全差分检测信号,大大的提高了检测精度。

关于本发明的其他目的,特征以及优点,下面将结合附图在具体实施方式中详细描述。

【附图说明】

结合参考附图及接下来的详细描述,本发明将更容易理解,其中同样的附图标记对应同样的结构部件,其中:

图1为本发明中的三轴加速度计在一个实施例中的俯视结构示意图;

图2为本发明中的三轴加速度计沿图1中的剖面线a-a的剖视结构示意图;

图3为图1中的三轴加速度计的部分结构的放大示意图;

图4为图3中的三轴加速度计的进一步放大的示意图;

图5为本发明中的三轴加速度计在x轴上有加速度时在预定时刻的结构示意图;

图6为本发明中的三轴加速度计在y轴上有加速度时在预定时刻的结构示意图;

图7为本发明中的三轴加速度计在z轴上有加速度时在预定时刻的结构示意图。

【具体实施方式】

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

此处所称的“一个实施例”或“实施例”是指与所述实施例相关的特定特征、结构或特性至少可包含于本发明至少一个实现方式中。在本说明书中不同地方出现的“在一个实施例中”并非必须都指同一个实施例,也不必须是与其他实施例互相排斥的单独或选择实施例。本发明中的“多个”、“若干”表示两个或两个以上。本发明中的“和/或”表示“和”或者“或”。

本发明提供一种三轴加速度计,该三轴加速度计基于一个质量块可以提供三个轴的高精度加速度检测。

图1为本发明中的三轴加速度计在一个实施例中的俯视结构示意图。图2为本发明中的三轴加速度计沿图1中的剖面线a-a的剖视结构示意图。图3为图1中的三轴加速度计的部分结构的放大示意图。图4为图3中的三轴加速度计的进一步放大的示意图。

如图1-2所示的,所述三轴加速度计100,其包括:

基板10;

固定设置于所述基板10上的第一锚块1a和第二锚块1b;

固定设置于所述基板10上的第一x轴电极3a、第二x轴电极3b、第一y轴电极4a、第二y轴电极4b、第一z轴电极6a和第二z轴电极6b;

悬置于所述基板10上方的框架60,其包括相对设置的第一梁柱61和第二梁柱62、连接第一梁柱和第二梁柱的第一连接梁63和第二连接梁64,第一梁柱61形成第三z轴电极5a,第二梁柱62形成第四z轴电极5b,其中第一z轴电极6a和第三z轴电极5a相对设置以形成第一z轴电容,第二z轴电极6b和第四z轴电极5b相对设置以形成第二z轴电容;

悬置于所述基板10上方的质量块2,其中所述框架60围成一个空间,所述质量块2位于所述框架60中,所述质量块2上形成有第三x轴电极3c和第三y轴电极4c,其中第一x轴电极3a和第三x轴电极3c相对设置以形成第一x轴电容,第二x轴电极3b和第三x轴电极3c相对设置以形成第二x轴电容,第一y轴电极4a和第三y轴电极4c相对设置形成以第一y轴电容,第二y轴电极4b和第三y轴电极4c相对设置形成以第二y轴电容;和

第一弹性连接组件71和第二弹性连接组件72,其中第一弹性连接组件弹性71连接于第一锚块1a、第一连接梁63以及所述质量块2上,第二弹性连接组件弹性72连接于第二锚块1b、第二连接梁64以及所述质量块2上。

在一个实施例中,所述框架60、所述质量块2、所述弹性连接组件71、72以及所述锚块1b和1a一起形成质量块电极,即这些部件的电位都是一致的,它们构成了同一个电极。举例来说,所述框架60、所述质量块2、所述弹性连接组件71、72以及所述锚块1b和1a均可以是导体或半导体材料或复合材料构成的,它们的电位是一致的。这样,所述质量块电极可以给第三z轴电极5a、第四z轴电极5b、第三x轴电极3c和第三y轴电极4c提供统一的电位。

结合图1-4所示的,每个弹性连接组件71、72包括:

与所述锚块1a、1b连接的连接部81(参照图4);

与连接部81的一端连接的第一弹性部53;

与连接部81的另一端连接的第二弹性部66;

与第一弹性部53连接的第一弹性臂51;

与第二弹性部66连接的第二弹性臂57;

连接于第一弹性臂51和第二弹性臂57之间的第三弹性部54;

连接于第一弹性臂51和所述连接梁的中部之间的第四弹性部55,第一弹性臂51与第四弹性部55连接的部分和所述连接梁与第四弹性部55连接的部分沿x轴方向间隔预定距离d(请参考图4所示);

连接于第一弹性臂51和质量块2的一侧之间的第五弹性部67;

连接于第二弹性臂57和质量块2的另一侧之间的第六弹性部68。

如图1和3所示的,第五弹性部67包括有y轴向延伸的第一弹性件41和x轴向延伸的第二弹性件42,其中第一弹性件41与所述质量块2相连,第二弹性件42与第一弹性臂51相连。第六弹性部68包括有y轴向延伸的第一弹性件43和x轴向延伸的第二弹性件44,其中第一弹性件43与所述质量块2相连,第二弹性件44与第二弹性臂57相连。

如图3和4所示的,所述连接梁63、64包括与第一梁柱61相连的第一端部52、与第二梁柱62相连的第二端部58和位于第一端部52和第二端部58之间的中间部,所述连接梁63、64的中间部包括位于内侧的颈部56(参照图4)和位于外侧的支撑部59,所述支撑部59的一侧与第二端部58相连,另一端与第一端52部断开。所述颈部56和所述支撑部59之间具有间隙,所述颈部56使得所述连接梁的中间部更具有弹性,所述支撑部59使得该中间部更具强度。所述第四弹性部55连接于所述颈部56的中点位置。

图5为本发明中的三轴加速度计在x轴上有加速度时在预定时刻的结构示意图。在x轴上具有加速度时,所述弹性连接组件71、72弹性形变,所述质量块2沿x移动,x轴电极之间的间隙变化导致x轴电容变化,比如第一x轴电极3a和第三x轴电极3c之间的间隙变大,第一x轴电容变小,第二x轴电极3b和第三x轴电极3c之间的间隙变小,第二x轴电容变大,再比如第一x轴电极3a和第三x轴电极3c之间的间隙变小,第一x轴电容变大,第二x轴电极3b和第三x轴电极3c之间的间隙变大,第二x轴电容变小,,通过检测第一x轴电容和第二x轴电容的变化差,可以得到x轴上的加速度。需要知道的是,图5以及后续的图6、7均为三轴加速度计的三维模型演示示意图,为了便于观看,其动作幅度已大大超过实际的动作幅度。

图6为本发明中的三轴加速度计在y轴上有加速度时在预定时刻的结构示意图。在y轴上具有加速度时,所述弹性连接组件71、72弹性形变,所述质量块2沿y移动,y轴电极之间的间隙变化导致y轴电容变化,比如第一y轴电极4a和第三y轴电极4c之间的间隙变大,第一y轴电容变小,第二y轴电极4b和第三y轴电极4c之间的间隙变小,第二y轴电容变大,再比如第一y轴电极4a和第三y轴电极4c之间的间隙变小,第一y轴电容变大,第二y轴电极4b和第三y轴电极4c之间的间隙变大,第二y轴电容变小,通过检测第一y轴电容和第二y轴电容的变化差,可以得到y轴上的加速度。

图7为本发明中的三轴加速度计在z轴上有加速度时在预定时刻的结构示意图。在z轴上具有加速度时,所述弹性连接组件71、72弹性形变,所述质量块2沿z轴移动,所述框架60转动,第一z轴电极和第三z轴电极之间的间隙变大或变小导致第一z轴电容变小或变大(间隙变大时电容变小,间隙变小时电容变大),第二z轴电极和第四z轴电极之间的间隙变小或变大导致第二z轴电容变大或变小(第一z轴电容变大时第二z轴电容变小,第一z轴电容变小时第二z轴电容变大),通过检测所述第一z轴电容和所述第二z轴电容的变化差,进而检测得到z轴上的加速度。比如,如图7所示的,此时所述质量块2向下移动,所述框架60的第一梁柱61向下转动,第一z轴电容变大,第二梁柱62向上转动,第二z轴电容变小,通过检测所述第一z轴电容和所述第二z轴电容的变化差,进而检测得到z轴上的加速度。

请如图4所示的,由于第一弹性臂51与第四弹性部55连接的部分和所述连接梁的颈部56的中点沿x轴方向间隔预定距离d,这种非对称结构使得在z轴方向上有加速度时,整个质量块2平移带动框架60发生转动,导致第一z轴电容和所述第二z轴电容发生相反的变化,从而可以得到z轴的全差分信号,提高z轴检测精度。

在一个实施例中,所述锚块也可以只有一个,此时所述连接梁也只有一个,所述框架未围成一个空间,所述弹性连接组件也只有一个,所述弹性连接组件弹性连接于锚块、连接梁以及所述质量块上。

在本发明中,“连接”、相连、“连”、“接”等表示电性相连的词语,如无特别说明,则表示直接或间接的电性连接,“耦接”表示直接或间接的电性连接或耦合连接。

上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1