一种基于大型无人机增强态势感知的多源遥感数据获取与处理方法与流程

文档序号:30489891发布日期:2022-06-22 01:26阅读:278来源:国知局
一种基于大型无人机增强态势感知的多源遥感数据获取与处理方法与流程

1.本发明涉及无人机技术领域,具体为基于大型无人机增强态势感知的多源遥感数据获取与处理方法。


背景技术:

2.大型无人机技术兴起,已经在许多领域取得良好的应用,但是更多的应用主要体现在,已采取其他方法对应用对象构成确定性的态势感知或风险监测预测信息后,利用大型无人机超长航时、远距离机动等特点,到达应用对象区域进行针对性数据获取或实施具体的应对措施等作业。
3.随着遥感技术的持续进步,多源遥感数据获取,已成为非常重要的研究热点,但是,至今,仍还没有形成超过4种类型的遥感器集成到一个飞行器平台开展实战化应用平台,究其原因,主要是过往的应用对多源遥感的需求不足够迫切以及单遥感器或不超过4种类型的遥感器集成已基本上满足一般遥感应用需求。
4.针对当前应急管理对自然灾害态势感知、风险监测预测的迫切需求,以及大型无人机在多源遥感集成应用方面存在的问题,急需一种能够克服上述缺陷,能够及时有效且增强态势感知能力。


技术实现要素:

5.为了解决现有技术存在的态势感知精准低、作业效率低、时效性差等技术问题,本发明提出了一种于大型无人机增强态势感知的多源遥感数据获取与处理方法,不仅能够提供秒级、分钟级、小时级等不同时效和类型(专题)的态势数据,而且可适应多种灾害类型、地理环境和气候条件的实战化应用需求。
6.为了实现上述目的,本发明的技术方案是:
7.基于大型无人机增强态势感知的多源遥感数据获取与处理方法,所述大型无人机a,包括在大型无人机a上安装高精度pos(gnss/imu) 系统b,其中,gnss航空天线安装在a机背上,并将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g 和倾斜摄影相机h以及必要的环境监测传感器i等与b深度集成后挂载到大型无人机a的底部,在此基础上,对大型无人机a进行必要的技改:(1)技改机载卫星通信数据链,并增配局域图传数据链和高速局域网等实现a机载数据上下传等通信能力增强;(2)a具备必要的机上数据处理能力增强;(3)基地j数据中心或者(车载)现场方舱k 数据中心等具备实现数据存储(云服务)、数据查询检索、数据编解码、在线数据处理、快速数据处理、高精准数据处理、多源数据融合分析、深度智能化理解及数据分发等能力支撑的软硬件条件。
8.基于在a上搭载由c、d、e、f、g、h以及i等与b深度集成的多源遥感系统,且在增强的a机载数据通信能力、机上数据处理能力及j、k数据中心的能力支持下,对可能存在的风险管控区域l进行多源遥感数据获取与处理并对l实现态势感知和风险监测预测能力,比当前
的态势感知和风险监测预测方法有显著增强:
9.(1)采用的多源遥感器,可在各种天候条件下昼夜获得数据。
10.(2)态势感知和风险监测预测既精准又可靠。
11.(3)作业效率高。
12.基于大型无人机增强态势感知的多源遥感数据获取与处理方法,包括如下步骤:
13.步骤1、在大型无人机a上安装高精度pos(gnss/imu)系统b,其中,gnss航空天线安装在a机背上,以保证gnss航空天线不受干扰且良好接收到gnss信号。
14.步骤2、将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g和倾斜摄影相机h以及必要的环境监测传感器i等与b深度集成后挂载到大型无人机a的底部,形成大型无人机a机载多源遥感系统,用于多源遥感数据获取作业。
15.步骤3、为提高多源遥感数据获取作业效率以及作业成果的精准度,大型无人机a搭载多源遥感系统进行数据获取作业,应充分做好以下几个方面:
16.(1)在l区域内地面架设1个或多个gnss基站进行同步数据观测,以用于机载pos系统事后差分或者实时rtk计算,原则上,数据观测频率不低于1hz。
17.(2)也可与我国各类cors观测数据(如省自然资源cors系统及其他部门的cors系统等)对接,进行必要技术参数设置,达到(1) 的性能。
18.(3)根据实际情况,也可不必考虑(1)和(2),而通过采用精密星历处理机载pos数据。
19.(4)大型无人机a起飞前和降落后应至少保持10分钟的pos 系统正常开机状态。
20.(5)大型无人机a每架次进入首航线前和离开末航线后,均应做8字或十字飞行动作,以利于后续的pos系统之imu计算瞬态姿态的精准度。
21.(6)作业前,应进行航线设计并优化,充分保证各遥感器的航向重叠、旁向重叠、空间分辨率等符合l区域的态势感知和风险监测预测需求。
22.(7)作业过程中,可根据实际情况,重新调整航线,进行补充飞行或者敏感地区、重点险情监测等。
23.步骤4、步骤2中c、d、e、f、g、h以及i等与b深度集成,原则上由两种方法构成:第一种方法是仅一套pos系统b与c、d、e、 f、g、h以及i等捷联形成刚性系统,第二种方法是采用一个gnss航空天线通过一对多功分器与多于1个以上pos系统如b1、b2、
……
等进行连接,而b1、b2、
……
等多个pos系统既可1对1与c、d、e、f、g、h以及i等分别捷联,也可1对多与c、d、e、f、g、h以及i等捷联,而形成刚性系统。
24.步骤5、步骤4中第一种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态位置信息,可以通过如下方法计算:
25.(1)pos系统b中的gnss数据与在l区域内地面架设的1个或多个gnss基站同步观测数据进行事后差分或者实时rtk计算,获得高精度的数据获取瞬态位置信息以及航迹信息等。
26.(2)pos系统b中的gnss数据与我国各类cors观测数据进行事后差分或者实时rtk计算,获得高精度的数据获取瞬态位置信息以及航迹信息等。
27.(3)利用精密星历对pos系统b中的gnss数据进行处理,获得高精度的数据获取瞬态位置信息以及航迹信息等。
28.步骤6、步骤4中第二种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态位置信息,可分别参照步骤5进行计算。
29.步骤7、步骤4中第一种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态姿态信息,可利用计算出的pos系统b高精度位置信息对imu进行高精度对准,从而输出c、d、e、f、g、h以及i等遥感器数据获取的瞬态姿态信息。
30.步骤8、步骤4中第二种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态姿态信息,可分别参照步骤7进行计算。
31.步骤9、利用增强的机载通信能力、机上数据处理能力,在j、 k数据中心可收到必要的实时数据,进行快速处理,与l区域内已有的空间数据以及其他来源的信息等进行叠加、融合分析,可实时显示l 区域内的风险监测及态势信息。
32.步骤10、在j、k数据中心,根据降落后a获得的全部多源数据,实现数据存储(云服务)、数据查询检索、数据编解码、在线数据处理、快速数据处理、高精准数据处理、多源数据融合分析、深度智能化理解及数据分发,生成数字表面模型(dsm)、数字高程模型(dem)、正射影像(dom)、真正射影像(tdom)、实景三维模型、激光雷达点云、激光能量反射强度图、高光谱特性曲线、热红外图以及火情风险、水情风险、滑坡风险、地表沉降风险、病虫害风险等专题数据等,可提供秒级、分钟级、小时级等不同时效和类型(专题)的态势数据,适应多种灾害类型、地理环境和气候条件的实战化应用需求。
33.步骤11、重复步骤3至步骤10,实现态势感知常态化。
34.有益效果:本发明通过在大型无人机a上上安装高精度pos (gnss/imu)系统b(其中,gnss航空天线安装在a机背上),将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g和倾斜摄影相机h以及必要的环境监测传感器i等与b 深度集成后挂载到大型无人机a的底部,在此基础上,形成由c、d、e、 f、g、h以及i等与b深度集成的多源遥感系统,且在增强的a机载数据通信能力、机上数据处理能力及j、k数据中心的能力支持下,对可能存在的风险管控区域l进行多源遥感数据获取与处理并对l实现态势感知和风险监测预测能力。本发明比当前的态势感知和风险监测预测方法有显著增强:
35.(1)采用的多源遥感器,可在各种天候条件下昼夜获得数据。
36.(2)态势感知和风险监测预测既精准又可靠。
37.(3)作业效率高。
附图说明
38.图1是本发明的工作原理示意图。
39.图2是本发明的连接方式示意图。
40.图3是本发明的工作流程示意图。
具体实施方式
41.下面结合附图对本发明的实施方式进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部得实施例。
42.如图1和图2所示,基于大型无人机增强态势感知的多源遥感数据获取与处理方法,所述大型无人机a,包括在大型无人机a上安装高精度pos(gnss/imu)系统b,其中,gnss
航空天线安装在a机背上,并将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g和倾斜摄影相机h以及必要的环境监测传感器i等与b深度集成后挂载到大型无人机a的底部,在此基础上,对大型无人机a进行必要的技改:(1)技改机载卫星通信数据链,并增配局域图传数据链和高速局域网等实现a机载数据上下传等通信能力增强;(2)a具备必要的机上数据处理能力增强;(3)基地j数据中心或者(车载)现场方舱k数据中心等具备实现数据存储(云服务)、数据查询检索、数据编解码、在线数据处理、快速数据处理、高精准数据处理、多源数据融合分析、深度智能化理解及数据分发等能力支撑的软硬件条件。
43.基于在a上搭载由c、d、e、f、g、h以及i等与b深度集成的多源遥感系统,且在增强的a机载数据通信能力、机上数据处理能力及j、k数据中心的能力支持下,对可能存在的风险管控区域l进行多源遥感数据获取与处理并对l实现态势感知和风险监测预测能力,比当前的态势感知和风险监测预测方法有显著增强:
44.(1)采用的多源遥感器,可在各种天候条件下昼夜获得数据。
45.(2)态势感知和风险监测预测既精准又可靠。
46.(3)作业效率高。
47.如图3所示,基于大型无人机增强态势感知的多源遥感数据获取与处理方法,包括如下步骤:
48.步骤1、在大型无人机a上安装高精度pos(gnss/imu)系统b,其中,gnss航空天线安装在a机背上,以保证gnss航空天线不受干扰且良好接收到gnss信号。
49.步骤2、将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g和倾斜摄影相机h以及必要的环境监测传感器i等与b深度集成后挂载到大型无人机a的底部,形成大型无人机a机载多源遥感系统,用于多源遥感数据获取作业。
50.步骤3、为提高多源遥感数据获取作业效率以及作业成果的精准度,大型无人机a搭载多源遥感系统进行数据获取作业,应充分做好以下几个方面:
51.(1)在l区域内地面架设1个或多个gnss基站进行同步数据观测,以用于机载pos系统事后差分或者实时rtk计算,原则上,数据观测频率不低于1hz。
52.(2)也可与我国各类cors观测数据(如省自然资源cors系统及其他部门的cors系统等)对接,进行必要技术参数设置,达到(1) 的性能。
53.(3)根据实际情况,也可不必考虑(1)和(2),而通过采用精密星历处理机载pos数据。
54.(4)大型无人机a起飞前和降落后应至少保持10分钟的pos 系统正常开机状态。
55.(5)大型无人机a每架次进入首航线前和离开末航线后,均应做8字或十字飞行动作,以利于后续的pos系统之imu计算瞬态姿态的精准度。
56.(6)作业前,应进行航线设计并优化,充分保证各遥感器的航向重叠、旁向重叠、空间分辨率等符合l区域的态势感知和风险监测预测需求。
57.(7)作业过程中,可根据实际情况,重新调整航线,进行补充飞行或者敏感地区、重点险情监测等。
58.步骤4、步骤2中c、d、e、f、g、h以及i等与b深度集成,原则上由两种方法构成:第一种方法是仅一套pos系统b与c、d、e、f、g、h以及i等捷联形成刚性系统,第二种方法是采用一
个gnss航空天线通过一对多功分器与多于1个以上pos系统如b1、b2、
……
等进行连接,而b1、b2、
……
等多个pos系统既可1对1与c、d、e、f、 g、h以及i等分别捷联,也可1对多与c、d、e、f、g、h以及i等捷联,而形成刚性系统。
59.步骤5、步骤4中第一种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态位置信息,可以通过如下方法计算:
60.(1)pos系统b中的gnss数据与在l区域内地面架设的1个或多个gnss基站同步观测数据进行事后差分或者实时rtk计算,获得高精度的数据获取瞬态位置信息以及航迹信息等。
61.(2)pos系统b中的gnss数据与我国各类cors观测数据进行事后差分或者实时rtk计算,获得高精度的数据获取瞬态位置信息以及航迹信息等。
62.(3)利用精密星历对pos系统b中的gnss数据进行处理,获得高精度的数据获取瞬态位置信息以及航迹信息等。
63.步骤6、步骤4中第二种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态位置信息,可分别参照步骤5进行计算。
64.步骤7、步骤4中第一种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态姿态信息,可利用计算出的pos系统b高精度位置信息对imu进行高精度对准,从而输出c、d、e、f、g、h以及i 等遥感器数据获取的瞬态姿态信息。
65.步骤8、步骤4中第二种方法,c、d、e、f、g、h以及i等遥感器数据获取的瞬态姿态信息,可分别参照步骤7进行计算。
66.步骤9、利用增强的机载通信能力、机上数据处理能力,在j、k 数据中心可收到必要的实时数据,进行快速处理,与l区域内已有的空间数据以及其他来源的信息等进行叠加、融合分析,可实时显示l区域内的风险监测及态势信息。
67.步骤10、在j、k数据中心,根据降落后a获得的全部多源数据,实现数据存储(云服务)、数据查询检索、数据编解码、在线数据处理、快速数据处理、高精准数据处理、多源数据融合分析、深度智能化理解及数据分发,生成数字表面模型(dsm)、数字高程模型(dem)、正射影像(dom)、真正射影像(tdom)、实景三维模型、激光雷达点云、激光能量反射强度图、高光谱特性曲线、热红外图以及火情风险、水情风险、滑坡风险、地表沉降风险、病虫害风险等专题数据等,可提供秒级、分钟级、小时级等不同时效和类型(专题)的态势数据,适应多种灾害类型、地理环境和气候条件的实战化应用需求。
68.步骤11、重复步骤3至步骤10,实现态势感知常态化。
69.本发明的工作原理:通过在大型无人机a上上安装高精度pos (gnss/imu)系统b(其中,gnss航空天线安装在a机背上),将合成孔径雷达c、激光雷达系统d、高光谱成像仪e、热红外成像仪f、高分视频相机g和倾斜摄影相机h以及必要的环境监测传感器i等与b 深度集成后挂载到大型无人机a的底部,在此基础上,形成由c、d、 e、f、g、h以及i等与b深度集成的多源遥感系统,且在增强的a机载数据通信能力、机上数据处理能力及j、k数据中心的能力支持下,对可能存在的风险管控区域l进行多源遥感数据获取与处理并对l实现态势感知和风险监测预测能力。比当前的态势感知和风险监测预测方法有显著增强:
70.(1)采用的多源遥感器,可在各种天候条件下昼夜获得数据。
71.(2)态势感知和风险监测预测既精准又可靠。
72.(3)作业效率高。
73.本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。
74.应当理解的是,本说明书未详细阐述的部分均属于现有技术。
75.应当理解的是,以上所述仅为本发明的具体实施方式,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1