磁场跟踪补偿的双磁路对称励磁圆柱形封闭磁场式电磁振动台磁路结构的制作方法

文档序号:8542274阅读:492来源:国知局
磁场跟踪补偿的双磁路对称励磁圆柱形封闭磁场式电磁振动台磁路结构的制作方法
【技术领域】
[0001]本发明属于振动校准装置领域,主要涉及一种磁场跟踪补偿的双磁路对称励磁圆柱形封闭磁场式电磁振动台磁路结构。
【背景技术】
[0002]近年来,航空航天、建筑桥梁、防震减灾等领域均提出了低频/超低频振动校准的需求。产生标准振动信号的电磁振动台是进行高精度振动校准的关键设备。为提高标准振动信号的信噪比,保证低频/超低频振动的校准精度,要求电磁振动台在保证推力和精度的前提下,具有尽可能大的行程。在大行程电磁振动台磁路结构的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、加工与装配精度之间的矛盾,其中的关键和难点是如何通过合理的磁路结构设计,并通过保证加工与装配精度,在长气隙内实现高均匀度的强磁感应强度分布,并在线圈通电后获得理想的线性电磁驱动力特性,即在全行程内输出的电磁驱动力大小与工作线圈中的电流成正比,而与工作线圈所处的位置无关。
[0003]浙江大学的何闻等提出了一种大行程电磁振动台磁路结构技术方案(1.浙江大学,“大行程电磁振动台的双磁路结构”,中国专利号:ZL200710069095.2 ;2.浙江大学,“一种电磁振动台”,中国专利号:ZL200820087256.0 ;3.浙江大学,“具有基于直线光栅尺反馈控制装置的振动台”,中国专利号:ZL201110115072.7 ;4.WenHe, et al.αClosed-Double-Magnetic Circuit for a Long-stroke HorizontalElectromagnetic Vibrat1n Exciter,,,IEEE Transact1ns on Magnetics,2011,49 (8):4865-4872)。该技术方案中,磁体(圆柱形)、中心磁极(磁轭)和筒状外磁极同轴线装配,两磁体的同磁极相对布置、安装在中心磁极两端,磁体中心设有通孔,采用非导磁螺栓进行固定,中心磁极同轴装配在筒状外磁极内部,筒状线圈套装在中心磁极上而位于气隙中。该技术方案采用双磁体互补,漏磁较小,磁体利用率高,能够实现较大的推力、较大的行程和较低的波形失真度指标,是国内公开报道的具有自主知识产权和较高实用化程度的电磁振动台磁路结构技术方案之一。
[0004]德国联邦物理技术研宄院(PTB)的Hans-J.von Martens等也提出了一种大行程电磁振动台磁路结构技术方案(1.Hans-J.von Martens, et al, " Traceability ofVibrat1n and Shock Measurements by Laser Interferometry" , Measurement,2000,28:3-20)。该技术方案采用圆柱形软磁芯、圆筒形永磁体和圆筒形软磁管,两永磁体的同磁极相对布置、安装在圆筒形软磁管的两端,软磁芯同轴装配在软磁管的内部,通过两端的软磁部件形成闭合磁路,线圈骨架和工作线圈均为圆筒形,线圈骨架可滑动地套装在中心磁轭上。采用该技术方案的大行程电磁振动台的振幅可达lm,配合高性能永磁体和磁轭材料,可实现较高水平的横向振动比、波形失真度等主要技术指标。
[0005]上述两种技术方案存在的不足之处在于:1)圆筒形外磁轭需进行长内尺寸加工,加工困难,精度难以保证;2)采用圆柱形永磁体时,永磁体上需加工通孔并通过非导磁螺栓固定在磁轭上,装配复杂且会对磁路产生影响;采用圆筒形永磁体时,大尺寸圆筒形永磁体的烧结、加工、充磁和装配均较为困难;3)圆筒形外磁轭需套装在中心磁轭上,如永磁体采用先充磁后装配的方式,装配十分困难,装配精度难以保证;AlNiCo材料的永磁体可采用先装配后充磁的方式,但由于AlNiCo材料的永磁体矫顽力较低,充磁效果受到限制,性能欠佳,严重制约磁路结构的力学性能与指标。
[0006]美国APS公司的Kenneth Joseph Metzgar等提出了一种大行程电磁振动台磁路结构技术方案(Kenneth Joseph Metzgar et al/‘Electrodynamic Force Generator,,,美国专利号:US3816777)。该技术方案的磁路结构是由4组相同的子装配体构成,每个子装配体由两个楔形磁极片、一个衔接块(软磁材料)、一个磁体组成,衔接块分隔并连接两个楔形磁极片的厚端,形成一个具有长气隙的钳形结构,磁体安装在气隙中并固定在一个楔形磁极片上,磁体可采用先装配后充磁的方式。4组子装配体两两层叠后,采用螺栓将两个层叠的子装配体固定形成层叠的钳形结构,再将两个层叠的钳形结构的钳口端对接,并采用卧在楔形磁极片中的螺栓将对接结构连接紧固,形成完整的磁路结构。对接后的磁路结构具有两条长气隙,动圈(工作线圈)位于气隙中。该技术方案易在气隙中实现高磁感应强度,且进行了较成熟的产品化和推广。
[0007]该技术方案存在的不足之处在于:1)整个磁路结构由多个结构组合、拼接构成,结构复杂;小块永磁体需采用胶粘或其它方式安装在楔形磁极片上,装配复杂,难以保证装配精度;2)气隙中某一位置的静态磁感应强度与该处永磁体的工作点直接相关,整个气隙内磁场的均匀性难以保证,对小块永磁体的材料和工艺的一致性要求较高;3)永磁体直接面对气隙,工作线圈通电后产生的附加磁场会对其强制充磁或去磁,当工作线圈中通以较大电流时,容易使永磁体产生不可逆退磁;4)工作线圈通电时,线圈一侧的磁通增大、另一侧磁通减少,由于永磁体直接面对气隙,磁通增大一侧的磁路容易饱和,此时线圈一侧增加的磁通比另一侧减少的磁通要少,导致线圈所在位置的平均磁感应强度降低,进而使产生的标准振动信号产生失真。
[0008]如前所述,在大行程电磁振动台磁路结构的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、加工与装配精度之间的矛盾,设计的难点和关键是通过合理的磁路结构设计,在长气隙内实现高均匀度的强磁感应强度分布,并使工作线圈通电后在全行程内输出的电磁驱动力与电流大小成正比,而与工作线圈所处位置无关,即获得理想的线性电磁驱动力特性。而现有技术均存在各种问题与不足之处,气隙内静态磁感应强度分布的均匀性和线圈通电后输出电磁驱动力的线性度指标很难有进一步提升。
[0009]其中的关键问题有三点:(1)长气隙内主磁路磁感应强度分布的均匀性难以保证。线圈通电前,永磁体励磁形成主磁路的磁感应强度分布,随着电磁振动台行程的增大,长气隙内磁场的非均匀性问题变得十分突出,严重制约线圈通电后输出电磁驱动力的线性度;有研宄人员尝试通过调整电流波形进行补偿,但效果难以保证,尤其是对高阶磁场非均匀性误差补偿效果较差,目前国内外尚未提出真正有效且具有较高实用性的补偿方法。(2)工作线圈通电后产生电枢反应的影响。工作线圈通电后产生附加磁场,与主磁场叠加耦合,对主磁场产生增磁或去磁作用,使气隙内不同位置、尤其工作线圈所在位置的磁感应强度分布变得不均匀,该现象称为电枢反应。受电枢反应影响,在行程内不同位置处当线圈所加载的电流密度相同时,输出的电磁驱动力不一致;而在气隙的同一位置处电磁驱动力的大小与电流密度不成正比,存在一定的非线性。电枢反应是电磁振动台产生波形失真度的关键因素之一,它的影响随驱动电流的增大而增大,是电磁振动台磁路结构设计中的难题。
(3)长磁轭与大尺寸永磁体加工与装配困难、精度难以保证。大行程电磁振动台的磁路结构中,长中心磁轭需采用合理的方式以两端支撑方式固定,为保证磁路结构的连续性和完整性,磁通密集的关键部位应尽量避免加工通孔/螺纹孔等安装结构;大尺寸永磁体的烧结、加工与装配均十分困难,成品率低,永磁体为脆性材料且价格昂贵,装配方法及结构不合理容易损坏,一般不宜在永磁体上加工通孔等形式的安装结构;同时要获得较大的电磁驱动力,一般采用NdFeB等材料的强磁永磁体,强磁永磁体零件装配过程中需要克服巨大的磁吸力,是该技术领域的一个难题。
[0010]此外,在大行程电磁振动台的工作过程中,工作线圈中通入的是交变驱动电流,电流幅值最大可达几十安培,线圈在长气隙中沿轴线方向以正弦规律往复运动。根据电磁场理论,交变电流及线圈运动产生的交变磁场会在磁轭表面,尤其是与气隙相邻的磁轭表面会产生电涡流,引起涡流损耗。涡流损耗一方面会产生功率最高可达几百瓦的热损耗,发热量惊人,进而带来一系列的热扰动与热变形问题;另一方面交变磁场及电涡流引起的瞬态场问题,会使实际的性能指标与按传统设计理论和分析方法得到的结果产生较大偏差,严重影响设计精度与效果。涡流损耗是电磁振动台磁路结构设计中的一个难题,目前国内外尚未找到有效的解决办法。
[0011]综上,受上述问题制约,采用现有技术方案产生的标准低频振动在波形失真度等指标上很难再有突破,难以满足低频/超低频振动的高精度校准,尤其是下一代具有甚低频和超精密特征的振动校准的需求。因此,如何通过方法、结构、材料和优化设计等环节的创新,提出具有超大行程、超低工作频率和超高精度的电磁振动台磁路结构技术方案,对于振动
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1