一种微型姿态模块的动态精度测试系统及其方法

文档序号:8920562阅读:597来源:国知局
一种微型姿态模块的动态精度测试系统及其方法
【技术领域】
[0001]本发明属于飞行器姿态系统性能测试技术领域,具体涉及一种微型姿态模块的动态精度测试系统及其方法。
【背景技术】
[0002]随着微电子系统技术的全面发展,小型化、低成本和低功耗的微型姿态模块已经成为导航领域的一个发展趋势。在飞行器技术领域,微型姿态模块通常作为导航测量系统,其基本功能是实现对角速度、比力等信息的直接测量并解算得到飞行器的俯仰角、横滚角等姿态,最终将传感器数据和计算结果发送到外部,用于载体的姿态控制或显示。微型姿态模块的输出姿态精度是其性能中最重要的部分。微型姿态模块的姿态精度测试包括高温、低温和常温下的静态精度测试和动态精度测试。其中,动态精度是指微型姿态模块在动态情况下姿态输出与转台基准角之间的误差,动态测试的主要内容包括:输出俯仰角、横滚角动态精度。为了最大限度地接近实际飞行载体的动态特性,通常选择摆动实验为动态测试的手段。
[0003]在目前实际工程应用中,微型姿态模块的所有标定、试验均在高精度双轴转台上完成,其动态精度测试实验,通常以转台输出角度作为对比基准。这种微型姿态模块的动态精度测试系统及方法,主要是通过双轴转台激励微型姿态模块,通过PC机采集转台和微型姿态模块在动态环境下的输出,由两者的输出之差计算出微型姿态模块的动态精度指标。这种测试系统及方法存在以下问题:一是要分别采集转台和微型姿态模块数据,导致两者数据不能同步;二是无法对微型姿态模块和转台数据的不同步性进行处理,造成测试精度较低、可靠性差;三是在精度指标计算中对微型姿态模块与转台安装误差不做处理,使测试结果可靠性低。

【发明内容】

[0004]本发明所要解决的技术问题是提供一种微型姿态模块的动态精度测试系统及其方法,可以同步采集转台和微型姿态模块的数据,也可以对微型姿态模块和转台数据的不同步性进行处理,并能有效对微型姿态模块与转台安装误差进行处理,测试精度高,可靠性好。
[0005]为了解决上述技术问题,本发明所采用的技术方案是:
一种微型姿态模块的动态精度测试系统,包括:
高精度双轴转台,实现动态运行规划,为测试系统提供位置、速率、摇摆动态基准,以串行方式输出动态参数;
微型姿态模块,由夹具固定在所述的高精度双轴转台上,为飞行器提供实时的加速度、角速度和姿态信息;
PC机数据处理模块,由PC机和数据处理软件组成,实现数据的接收与存储并完成动态精度指标的解算及输出; 其特征在于,还包括一个数据同步采集板,由单片机和接口电路组成;所述的数据同步采集板在动态测试中采集高精度双轴转台和微型姿态模块的数据,在所述的单片机中完成数据的同步,同时将此数据以串行方式输出到PC机数据处理模块。
[0006]所述的微型姿态模块通过第一接口电路与所述的高精度双轴转台串行连接;所述的数据同步采集板通过第二接口电路、第三接口电路分别串行连接到所述的微型姿态模块和高精度双轴转台的输出接口,实现微型姿态模块与高精度双轴转台的同步数据采集;数据同步采集板通过第四接口电路串行连接到所述的PC机数据处理模块,PC机接收并存储所述的同步采集数据,数据处理软件通过对该记录数据的进一步分析,计算微型姿态模块的动态精度指标。
[0007]所述的数据同步采集板的单片机采用STM32F407型ARM处理器。
[0008]所述的第二接口电路和第四接口电路采用RS422接口 MAX490芯片,第三接口电路采用RS232接口 MAX232芯片。
[0009]一种微型姿态模块的动态精度测试的方法,其特征在于,具体步骤如下:
步骤一、通过高精度夹具将微型姿态模块固定在高精度双轴转台的内框安装平面上; 步骤二、将数据同步采集板的第二接口电路、第三接口电路分别连接微型姿态模块和高精度双轴转台的输出接口;
步骤三、启动微型姿态模块和转台并设置转台内框动态运动条件,设置测试时间并启动测试;
步骤四、启动数据同步采集板,实现微型姿态模块和转台的同步数据采集,同时单片机完成数据的粗同步;
步骤五、将粗同步后的数据发送到PC机数据处理模块;
步骤六、PC机数据处理模块进行数据的精同步;分析处理存储数据,计算微型姿态模块的动态精度。
[0010]在步骤四中,所述数据粗同步的过程是:所述的数据同步采集板启动后,单片机处理器延时初始化并启动开机时间,利用同步采集程序将接收到的微型姿态模块和转台的数据分别添加时间标志后,再将添加了时间标志的微型姿态模块和转台数据进行解码、整合并输出给PC机储存。
[0011]在步骤六中,所述数据精同步的过程是:
PC机数据处理模块读取精同步数据,并对添加了时间标志的微型姿态模块的横滚角信息、俯仰角信息数据以及转台的内外框位置信息数据进行拟合;将微型姿态模块横滚角、俯仰角数据小量平移,使微型姿态模块信息的基准与转台输出信息的基准之间的同步性更精确。
[0012]在所述步骤六中,所述的计算微型姿态模块的动态精度的过程是:
用PC机数据处理模块的MATLAB对精同步后的数据进行处理,利用转台静止阶段采集的微型姿态模块数据求平均,得到微型姿态模块的横滚角初始安装误差、俯仰角初始安装误差;扣除安装误差后,对每一时刻的微型姿态模块横滚角和转台内框角求差值,得到该时刻的微型姿态模块横滚角误差;将每一时刻的横滚角误差平方相加再开根即可得到微型姿态模块横滚角动态精度结果。
[0013]本发明与现有技术相比,具有以下优点和有益效果: 1.本发明通过嵌入式数据同步采集板对微型姿态模块数据和转台数据进行实时同步采集和实时粗同步处理,从而提高了动态情况下采集得到的微型姿态模块的实时数据的可信度,采用该方法测试出的微型姿态模块动态精度更加可靠和精确;
2.本发明通过PC机MATLAB数据处理软件,采用精同步软件算法对粗同步后的数据进行精同步处理,进一步提高了动态情况下高频采集得到的微型姿态模块数据和转台数据的同步性,从而提高了该方法测试得到的微型姿态模块的动态精度。
[0014]3、本发明可拓展至对多个微型姿态模块同时进行动态精度测试,进一步提高测试效率。本发明所测试的微型姿态模块,是通过高精度夹具固定在双轴转台内框中,如需同时对多个微型姿态模块进行批量动态精度测试,可改用批量测试专用夹具,数据同步采集板可同时采集多个微型姿态模块数据和转台数据并完成同步,同时发送给PC机。S卩,若实现多个模块批量测试,仅仅需改装原有夹具,减少了成本,提高了测试效率。
[0015]下面结合附图和具体实施例对本发明做进一步详细说明。
【附图说明】
[0016]图1是现有技术的微型姿态模块的动态精度测试方法示意图。
[0017]图2是本发明测试系统示意图。
[0018]图3是本发明测试系统的主要信号流程图。
[0019]图4是本发明测试方法流程图。
[0020]图5是本发明的微型姿态模块与转台数据处理流程图。
[0021]图6是本发明测试系统的数据同步方法。
[0022]图7是本发明测试系统的动态精度指标计算方法。
[0023]图8— 11是本发明测试系统的微型姿态模块横滚角、俯仰角动态精度测试结果曲线,分别为:
图8是转台内框角与产品横滚角位置曲线图。
[0024]图9是横滚角位置误差。
[0025]图10是转台内框角与产品俯仰角位置曲线图。
[0026]图11是俯仰角位置误差图。
[0027]其中,I高精度双轴转台,2微型姿态模块,3数据同步采集板,4 PC机数据处理模块,5第一接口电路,6第二接口电路,7第三接口电路,8第四接口电路。
【具体实施方式】
[0028]如图1所示,现有技术的微型姿态模块动态精度测试主要通过PC机分别采集微型姿态模块和提供基准的转台的数据,同时计算精度指标。该方法不能保证双方数据的同步,造成了微型姿态模块动态精度测试指标的准确度低,可靠性差。
[0029]如图2所示,为本发明微型姿态模块的动态精度测试系统,包括:
高精度双轴转台(1),实现动态运行规划,为测试系统提供位置、速率、摇摆动态基准,以串行方式输出动态参数;
微型姿态模块(2),由夹具固定在所述的高精度双轴转台(I)上,为飞行器提供实时的加速度、角速度和姿态信息; PC机数据处理模块(4),由PC机和数据处理软件组成,实现数据的接收与存储并完成动态精度指标的解算及输出;
其特征在于,还包括一个数据同步采集板(3),由单片机和接口电路组成;所述的数据同步采集板(3 )在动态测试中采集高精度双轴转台(I)和微型姿态模块(2 )的数据,在所述的单片机中完成数据的同步,同时将此数据以串行方式输出到PC机数据处理模块(4)。该数据同步采集板有效保证了测量工具一高精度双轴转台和被测量物一微型姿态模块数据的高度同步,保证了测量指标的可靠性。
[0030]图3是本发明测试系统的主要信号流程图。其中,所述的微型姿态模块(2)通过第一接口电路(5)与所述的高精度双轴转台(I)串行连接;所述的数据同步采集板(3)通过第二接口电路(6)、第三接口电路(7)分别串行连接到所述的微型姿态模块(2)和高精度双轴转台(I)的输出接口,实现微型姿态模块(2)与高精度双轴转台(I)的同步数据采集;数据同步采集板(3 )通过第四接口电路(8 )串行连接到所述的PC机数据处理模块(4 ),PC机接收并存储所述的同步采集数据,数据处理软件通过对该记录数据的进一步分析,计算微型姿态模块(2)的动态精度指标。
[0031]所述的数据同步采集板(3)的单片机采用STM32F407型ARM处理器。
[0032]所述的第二接口电路(6)和第四接口电路(8)采用RS422接口 MAX490芯片,第三接口电路(7 )采用RS232接
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1