一种用于激光干涉仪测量导轨直线度的光学系统的制作方法

文档序号:10486479阅读:695来源:国知局
一种用于激光干涉仪测量导轨直线度的光学系统的制作方法
【专利摘要】本发明提供一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件、光学转向镜、可旋转激光头和外光路组件,光束通过所述探测光学组件实现双通道的光学探测,所述光学转向镜用于实现光束的下移和转向以适应所述探测光学组件的探测需求,所述可旋转激光头为设置于所述探测光学组件和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。本发明通过三维光学转向镜大大简化了垂直方向直线度测量的设置和步骤,所述探测光学组件实现双通道的光学探测,简化了光学系统的光学元件,最大化的利用了光学元件,节约仪器设计的空间;同时,所述可旋转激光头的激光回光孔设计得更为合理,充分利用了现有的孔位。
【专利说明】
一种用于激光干涉仪测量导轨直线度的光学系统
技术领域
[0001]本发明涉及一种光学系统,尤其涉及一种用于激光干涉仪测量导轨直线度的光学系统。
【背景技术】
[0002]现有技术中,激光干涉仪测量导轨直线度采用如图2和图3所示的方式,在图2中,激光从激光头出射,在渥拉斯顿棱镜处分成水平方向上的两束,两束光通过反射镜后反射回渥拉斯顿棱镜处,通过渥拉斯顿棱镜合束成一束返回到激光器。测量时,移动反射镜或者渥拉斯顿棱镜都可,当运动过程中测量轴和光轴有一个相对的偏差,这时就可以通过激光头里面的电子系统记录下来,得到这一变化值,继而得出被测导轨的直线度信息;测量镜沿着X运动时,可以测量出Y方向的直线度的数据;若要沿着X方向移动,测量出Z轴方向上的直线度数据,这样就得让整个激光干涉仪系统包括主机都需要旋转90°,这样会使得测量极为不便。
[0003]图3的测量原理与图2类似,只是将双直角反射镜变为了双平面反射镜,由于激光头的出射和入射孔位不重合,所以图3的测量方法需要在信号光回光处加上一个回光组件,以保证让信号光能够进入激光头。但是这种方式由于回光组件的原因,有部分光进入到激光干涉仪,这样会引起激光系统的稳定性,甚至出现不能稳频的情况,尤其是对单频激光干涉仪,基本不能使用这种方法。

【发明内容】

[0004]本发明所要解决的技术问题是需要提供一种测量方便简单,简化垂直方向直线度测量的设置和步骤,简化光学元件,并在测量XZ平面和YZ平面上导轨直线度时能够便于回射光回到探测器的用于激光干涉仪测量导轨直线度的光学系统。
[0005]对此,本发明提供一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件、光学转向镜、可旋转激光头和外光路组件,光束通过所述探测光学组件实现双通道的光学探测,所述光学转向镜用于实现光束的下移和转向以适应所述探测光学组件的探测需求,所述可旋转激光头为设置于所述探测光学组件和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。
[0006]本发明的进一步改进在于,所述探测光学组件包括一个消偏振分光棱镜和两个偏振分光棱镜,所述两个偏振分光棱镜分别设置于所述消偏振分光棱镜的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜分别达到所述两个偏振分光棱镜。
[0007]本发明的进一步改进在于,每一个偏振分光棱镜上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜分别达到所述偏振分光棱镜的探测器。
[0008]本发明的进一步改进在于,所述光学转向镜为三维光学转向镜,所述三维光学转向镜用于将入射的光束向下平移,并且射出的光束与入射的光束相比转向90°。
[0009]本发明的进一步改进在于,光束从光学转向镜的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从X轴方向变为Z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。
[0010]本发明的进一步改进在于,所述可旋转激光头包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端。
[0011]本发明的进一步改进在于,所述可旋转激光头将激光出射孔设置于该可旋转激光头的中心位置。
[0012]本发明的进一步改进在于,所述光学系统正常工作时,所述可旋转激光头的激光回光孔设置于激光出射孔的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔和激光出射孔位于同一水平面。
[0013]本发明的进一步改进在于,所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔和激光出射孔位于同一水平面。
[0014]本发明的进一步改进在于,所述外光路组件包括渥拉斯顿棱镜和双直角反射镜,所述渥拉斯顿棱镜设置于所述可旋转激光头和双直角反射镜之间。
[0015]与现有技术相比,本发明的有益效果在于:通过三维光学转向镜大大简化了垂直方向直线度测量的设置和步骤;所述探测光学组件实现双通道的光学探测,简化了光学系统的光学元件,精简了机械结构的设计,并且最大化的利用了光学元件,节约仪器设计的空间;同时,所述可旋转激光头的激光回光孔设计得更为合理,充分利用了现有的孔位,而无需增加其他孔位,既使得机械结构更为简单,又可以减少光学元件的使用,减少孔位还有利于防止灰尘对仪器寿命的影响。
【附图说明】
[0016]图1是本发明一种实施例的整体光路结构不意图;
图2是一种现有技术的整体光路结构示意图;
图3是另一种现有技术的整体光路结构示意图;
图4是本发明一种实施例的探测光学组件的平面结构示意图;
图5是本发明一种实施例的探测光学组件和光学转向镜的立体结构示意图;
图6是本发明一种实施例的光学转向镜的立体结构示意图;
图7是本发明一种实施例的可旋转激光头的平面结构示意图;
图8是本发明一种实施例的可旋转激光头的立体结构示意图。
【具体实施方式】
[0017]下面结合附图,对本发明的较优的实施例作进一步的详细说明。
[0018]如图1所示,本例提供一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件1、光学转向镜2、可旋转激光头3和外光路组件,光束通过所述探测光学组件I实现双通道的光学探测,所述光学转向镜2用于实现光束的下移和转向以适应所述探测光学组件I的探测需求,所述可旋转激光头3为设置于所述探测光学组件I和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。
[0019]所述激光干涉仪是用光波干涉技术测量线性位移的光学测量仪器,在测量时,激光分为两束,一束为静止的参考光,另外一束为运动的测量光,本例将运动的测量光简称为光束,通过记录测量光运动时与参考光的相位差,通过电子和算法来得到运动的测量光的移动距离。
[0020]本例在测量XY平面的直线度信息时,如图1上半部分所示,按照常规的测量方法即可;在测量XZ平面和YZ平面的直线度信息时,只需将可旋转激光头3旋转90°,如图1下半部分所示就可以得到相应的直线度的信息。
[0021]如图4和图5所示,本例所述探测光学组件I包括一个消偏振分光棱镜5和两个偏振分光棱镜6,所述两个偏振分光棱镜6分别设置于所述消偏振分光棱镜5的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜5分别达到所述两个偏振分光棱镜6 ;每一个偏振分光棱镜6上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜5分别达到所述偏振分光棱镜6的探测器,所述探测器设置在图4中A、B、C和D的位置。回射光既可以通过4中实线光路回到四个探测器,又可以通过虚线回到四个探测器。本例通过探测光学组件I的设计,扩展探测光学组件I的光学接口,使得通过三维光学转向镜的信号光可以到达电子探测系统,进而得到测量的数据。
[0022]本例采用从消偏振分光棱镜5另外一端入射,如图4所示,不仅缩小的机械结构的尺寸,另外减少了光学元件的使用,还使得整个探测光学组件I的结构更为紧凑。
[0023]如图5和图6所示,所述光学转向镜2为三维光学转向镜,所述三维光学转向镜2用于将入射的光束向下平移一段,并且射出的光束与入射的光束相比转向90°,进而保证测量XZ平面和YZ平面的直线度时信号光能被探测器所探测到。图6是三维光学转向镜的光学结构示意图,其光束传播的路线如图6所示,光束从光学转向镜2的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从X轴方向变为z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。
[0024]由于内部探测系统位置已经固定,即所述探测光学组件I的位置已经固定,测量XZ平面和YZ平面直线度的光束与测量XY平面直线度的信号光位置已经发生了变化,本例通过三维光学转向镜可以将光束下移到测量XY平面直线度信号光的水平位置上,能够解决测量XZ平面和YZ平面测量直线度时,干涉光斑不能回到探测器的问题,并且通过与可旋转激光头3相配合的光路设计,使得测量XZ平面和YZ平面的直线度信号与测量XY平面的直线度信号同光路。
[0025]如图7和图8所示,本例所述可旋转激光头3包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端,所述可旋转激光头3将激光出射孔7设置于该可旋转激光头3的中心位置;所述光学系统正常工作时,所述可旋转激光头3的激光回光孔8设置于激光出射孔7的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔8和激光出射孔7位于同一水平面。本例所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔8和激光出射孔7位于同一水平面。
[0026]相比于传统的激光头回光部件的出射孔和回光孔中心对称的设计,本例将激光出射孔7设置于整个可旋转激光头3的中心位置,以保证可旋转激光头3在旋转过程中激光能顺利出射,激光回光孔8在正常模式下置于激光出射孔7的下方,在测量XZ平面和YZ平面上导轨的直线度时,需要将其旋转90°,将激光出射孔7和激光回光孔8置于同一水平面即可。
[0027]本例通过可旋转激光头3和光束返回光路的设计,使得测量方便简洁;同时,通过可旋转激光头3的激光回光孔8的设计,使得单频激光干涉仪也能够很好的使用这种结构。
[0028]本例所述外光路组件包括渥拉斯顿棱镜4和双直角反射镜9,所述渥拉斯顿棱镜8设置于所述可旋转激光头3和双直角反射镜9之间。
[0029]本例所述可旋转激光头3,以激光出射孔7为可旋转激光头3的中心进行旋转,可以充分利用可旋转激光头3的激光出射孔7和激光回光孔8,免除了多余的孔位,也能尽量防止激光干涉仪长时间使用时灰尘对其影响;所述光学转向镜2的设计,可以轻松转换测量的轴向,大大的方便了垂直方向上直线度的测量,并且与通用的测量方法共用一个1/2波片,减少了光学元件的使用;所述探测光学组件I构成了双通道光学探测系统,减少了光学元件的使用,使得探测系统更为简单紧凑,同时最大化利用了已有的光学系统;值得一提的是,本例在未增加激光头孔位的情况下,增加了测量的维度。
[0030]本例通过三维光学转向镜2大大简化了垂直方向直线度测量的设置和步骤;所述探测光学组件I实现双通道的光学探测,简化了光学系统的光学元件,精简了机械结构的设计,并且最大化的利用了光学元件,节约仪器设计的空间;同时,所述可旋转激光头3的激光回光孔8设计得更为合理,充分利用了现有的孔位,而无需增加其他孔位,既使得机械结构更为简单,又可以减少光学元件的使用,减少孔位还有利于防止灰尘对仪器寿命的影响。
[0031]以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
【主权项】
1.一种用于激光干涉仪测量导轨直线度的光学系统,其特征在于,包括:探测光学组件、光学转向镜、可旋转激光头和外光路组件,光束通过所述探测光学组件实现双通道的光学探测,所述光学转向镜用于实现光束的下移和转向以适应所述探测光学组件的探测需求,所述可旋转激光头为设置于所述探测光学组件和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。2.根据权利要求1所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述探测光学组件包括一个消偏振分光棱镜和两个偏振分光棱镜,所述两个偏振分光棱镜分别设置于所述消偏振分光棱镜的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜分别达到所述两个偏振分光棱镜。3.根据权利要求2所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,每一个偏振分光棱镜上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜分别达到所述偏振分光棱镜的探测器。4.根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学转向镜为三维光学转向镜,所述三维光学转向镜用于将入射的光束向下平移,并且射出的光束与入射的光束相比转向90°。5.根据权利要求4所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,光束从光学转向镜的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从X轴方向变为z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。6.根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述可旋转激光头包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端。7.根据权利要求6所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述可旋转激光头将激光出射孔设置于该可旋转激光头的中心位置。8.根据权利要求7所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学系统正常工作时,所述可旋转激光头的激光回光孔设置于激光出射孔的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔和激光出射孔位于同一水平面。9.根据权利要求8所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔和激光出射孔位于同一水平面。10.根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述外光路组件包括渥拉斯顿棱镜和双直角反射镜,所述渥拉斯顿棱镜设置于所述可旋转激光头和双直角反射镜之间。
【文档编号】G01B11/27GK105841638SQ201610323294
【公开日】2016年8月10日
【申请日】2016年5月13日
【发明人】刘龙为, 张和君, 张珂, 陈源
【申请人】深圳市中图仪器科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1