一种轮腿复合式移动平台步态控制方法

文档序号:6311700阅读:213来源:国知局
专利名称:一种轮腿复合式移动平台步态控制方法
技术领域
本发明主要涉及到移动平台的控制领域,特指一种适用于轮腿复合式移动平台的步态控制方法。
背景技术
基于轮腿复合运动结构的移动平台(例如轮胎复合式机器人)既能发挥轮式结构的高速机动性,又能保证腿式结构的灵活性以及良好的越障能力,还可以实现更复杂的轮腿复合的运动步态,它可以在多种地形条件和复杂环境下进行应用,因而在探测、救灾、军事侦察、扫雷排险等方面都有广阔的应用前景。如图I所示为一种现有的轮腿复合运动平台,它包括机架2以及连接于机架2底 部的前部轮腿组件5和后部轮腿组件4,机架2包括通过铰接在一起的前部身板3和后部身板1,前部身板3和后部身板I之间可以产生相对转动以改变两者的相对位置。前部轮腿组件5和后部轮腿组件4均包括大腿摆臂、车轮机构以及小腿摆臂,大腿摆臂的一端铰接于机架2上并可绕铰点摆动,大腿摆臂的另一端与小腿摆臂的一端相连形成肘部并可绕肘部摆动形成折叠,车轮机构装设于小腿摆臂中段处。小腿摆臂的底部末端设有用来完成行走的足部。这种轮腿复合运动平台通过前、后轮腿系统的折叠与伸展,能够实现轮腿运动模式切换,令轮式运动方式与腿式运动方式相互独立,在完成状态切换之后,轮式运动机构与腿式运动机构完全区分开。在轮式运动中,腿式机构折叠与机架联接为一体;在腿式运动方式中,轮式机构位置较高,无法干扰腿式运动。但是,在上述结构的轮腿复合运动平台中,并没有一套行之有效的运动步态控制方法,使其能在各类复杂地形环境下进行运动步态的选择以及在不同运动步态之间的自由切换,这就将大大限制轮腿复合运动平台的适用范围。

发明内容
本发明要解决的技术问题就在于针对现有技术存在的技术问题,本发明提供一种原理简单、能够提高轮腿移动平台操控性和控制精准度、增强其适应能力的轮腿复合式移动平台步态控制方法。为解决上述技术问题,本发明采用以下技术方案—种轮腿复合式移动平台步态控制方法,其步骤为(I)初始模态建立运动模态选择函数mode ( θ 17 Θ 2,· · ·,Θ 2)、单腿运动模态选择函数 Iegmode ( ε P ε 2,ε 3,ε 4);(I. I)运动模态选择函数mode ( Θ P Θ 2,…,θ n):当mode (O)函数值取I时,轮腿复合式移动平台选用轮式模态前进;当Hiode(O)函数值取2时,轮腿复合式移动平台选用腿式模态前进;当Hiode(O)函数值取3时,轮腿复合式移动平台选用轮腿复合模态前进;(I. 2)单腿运动模态选择函数 Iegmode ( ε 17 ε 2,ε 3,ε 4) ε j = 1,2,3,4,以表示轮腿复合式移动平台左前腿将采用1,2,3,4简单步态;82= 1,2,3,4,以表示右前腿将采用相应简单步态;ε 3 = 1,2,3,4,以表示左后腿将采用相应简单步态;ε 4 = 1,2,3,4,以表示右后腿将采用相应简单步态;其中,后腿步态I主要用于轮腿复合式移动平台低姿轮式高速前进,后腿步态2主要用于轮腿复合式移动平台高姿轮式避障前进,后腿步态3主要用于轮腿复合式移动平台在非结构化地形条件下轮式变结构适应性通行,后腿步态4主要用于轮腿复合式移动平台在复杂地形下腿式前进;前腿步态I主要用于轮腿复合式移动平台低姿轮式高速前进,前腿步态2主要用于轮腿复合式移动平台高姿轮式避障前进,前腿步态3主要用于轮腿复合式移动平台在非结构化地形下轮式变结构适应性通行,前腿步态4主要用于机器人在复杂地形下腿式前进;(2)通过传感器实时采集路况上障碍物信息,分析判断后利用运动模态选择函数mode ( Θ 17 θ2,...,θ η)、单腿运动模态选择函数legmode ( ε ρ ε 2,ε 3,ε 4)选择移动平台的行走姿态;(3)由现有行走姿态切换至步骤(2)中所选择的行走姿态。 作为本发明的进一步改进所述步骤(I. I)中将轮式模态分为低姿轮式模态、高姿轮式模态以及适应性轮式模态,其选择由姿态选择函数wheelmode ( δ P δ 2,…,δ η)来实现;当wheelmode (O)的函数值取I时,采用低姿轮式;当wheelmode (Θ)的函数值取2时,采用高姿轮式;当wheelmode (Θ)的函数值取3时采用适应性轮式。在所述步骤(I. 2)对单腿步态建立的步骤为(I. 2. I)先定义移动平台的坐标系,以移动平台的质心为原点,沿移动平台的纵轴指向头部方向为X轴,沿移动平台横轴指向左手边方向为Y轴,根据右手坐标准则确定Z轴;依据上述坐标系,设定姿态角a ij, i = 1,2,3,4 ;j = I, 2, 3,其中i为腿的标示符,I表示左前腿、2表示右前腿、3表示左后腿、4表示右后腿;j为关节标示符,I表示髋关节横向摆动角、2表示髋关节纵向摆动角、3表示膝关节纵向摆动角;(I. 2. 2)设定前腿和后腿的步态后腿步态I :步态的姿态角约束为a ^ = 0,i = 3,4 ;j = 1,2,3 ;后腿步态2 :步态的姿态角约束为α η = 0,a i2+a i3 = 90°,a i2 e
,i = 3,4 ;后腿步态3 :步态的姿态角约束为a n e [-30。,60° ],a i2+a i3 = 90。],a i2 e
,i = 3,4 ;后腿步态4 :步态的姿态角约束为CiilG [-30°,60° ],a i2 e [-45°,90° ],a i3 =
, i = 3,4。前腿步态I :步态的姿态角约束为a Jj = O, a il,2 ;j = 1,2,3 ;前腿步态2 :步态的姿态角约束为a η = 0,a i2+a i3 = 90。,a i2 e
,i = 1,2 ;前腿步态3 :姿态角约束为 a n e [-30° ,60° ],a i2+a i3 = 90。, a i2 e
,i = 1,2 ;前腿步态4 :步态的姿态角约束为CiilG [-30°,60° ],a i2 e [-45°,90° ],a i3 =
,i = 1,2。
所述步骤(3)的具体切换过程为(3. I)低姿轮式向高姿轮式切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态2与前腿步态2,相应的角度关系为an,i = I,2,3,4保持不变,ai2,i = 1,2,3,4同步增大到
之间的一个角度,同时a i3,i = 1,2,3,4同步变为90° -ai2 ;(3. 2)低姿轮式向变形轮式切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态3与前腿步态3,与之相应的角度关系为an,i = 1,2,3,4同步变化到[-30。,60。]之间的一个角度,ai2,i = 1,2,3,4同步增大到[O。,90。]之间的一个角度,同时ai3, i = 1,2,3,4同步变为90° - a i2 ;(3. 3)低姿轮式向腿式步态切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态4与前腿步态4,Ciil, i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,ai2,i = 1,2,3,4分别在[-45。,90。]内进行调整,a i3, i = 1,2,3,4分别在
内进行调整;·(3.4)低姿轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换;(3.5)高姿轮式向变形轮式切换时,单腿简单步态切换过程是后腿步态2与前腿步态2同时切换为后腿步态3与前腿步态3,角度关系为an,i = 1,2,3,4同步变化到[-30。,60。]之间的一个角度,a i2,i = 1,2,3,4运动范围保持不变,a i3, i = 1,2,3,4同步变为90° -ai2;(3. 6)高姿轮式向腿式运动步态切换时,单腿简单步态切换过程是后腿步态2与前腿步态2同时切换为后腿步态4与前腿步态4,an,i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,ai2,i = 1,2,3,4分别在[-45°,90。]内进行调整,a i3,i = 1,2,3,4分别在
内进行调整;(3.7)高姿轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换;(3. 8)变形轮式向腿式运动步态切换时,单腿简单步态切换过程是后腿步态3与前腿步态3同时切换为后腿步态4与前腿步态4,an,i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,ai2,i = 1,2,3,4分别在[-45°,90。]内进行调整,a i3,i = 1,2,3,4分别在
内进行调整;(3.9)变形轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换;(3. 10)腿式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换。与现有技术相比,本发明的优点在于(I)本发明的轮腿复合式移动平台步态控制方法,原理简单、控制精度高,基于轮腿复合式移动平台的运动机理,使其实现轮式、腿式行走、自由转弯,轮式与腿式模态自由切换,满足上下楼梯、跨越障碍等功能需要,从而表现良好的环境适应能力。(2)本发明的轮腿复合式移动平台步态控制方法,能使轮腿复合式移动平台在各类复杂地形环境下行走,通过设置复合步态以及各类复合步态间自由切换的控制方法,确保了轮腿复合式移动机器人的良好地形适应能力。


图I是轮腿复合式移动平台的结构示意图。图2是本发明方法的流程示意图。图3是应用本发明方法后移动平台处于低姿轮式运动模态时的示意图。图4是应用本发明方法后移动平台处于高姿轮式运动模态时的示意图。 图5是应用本发明方法后移动平台处于适应性轮式运动模态时的示意图。图6是应用本发明方法后移动平台处于腿式运动模态时的示意图。图7是应用本发明方法后移动平台处于轮腿复合式运动模态时的示意图。图8是轮腿复合式移动平台的后腿角度示意图。图9是轮腿复合式移动平台的前腿角度示意图。图10是应用本发明方法后移动平台的后腿步态I不意图。图11是应用本发明方法后移动平台的后腿步态2不意图。图12是应用本发明方法后移动平台的后腿步态3不意图。图13是应用本发明方法后移动平台的后腿步态4不意图。图14是应用本发明方法后移动平台的前腿步态I示意图。图15是应用本发明方法后移动平台的前腿步态2示意图。图16是应用本发明方法后移动平台的前腿步态3示意图。图17是应用本发明方法后移动平台的前腿步态4示意图。
具体实施例方式以下将结合说明书附图和具体实施例对本发明做进一步详细说明。本发明主要是基于轮腿复合式移动平台的运动步态控制方法,参见图I为这类轮腿复合式移动平台的基本结构,通过本发明的运动步态控制方法可以充分挖掘此类移动平台的多样化功能,可以根据实际路况实现多种运动模式(包括轮式模态、腿式模态以及轮腿复合模态),加载相应的执行机构后可以执行多种类型的专业任务。如图2所示,本发明轮腿复合式移动平台步态控制方法的具体步骤为(I)初始模态建立运动模态选择函数mode ( Θ 1 Θ 2,· · ·,θ J、单腿运动模态选择函数 Iegmode ( ε P ε 2,ε 3,ε 4);(I. I)建立关于轮式模态、腿式模态以及轮腿复合模态的运动模态选择函数mode ( Θ j, Q2,..., θ n);当mode (Θ)函数值取I时,轮腿复合式移动平台选用轮式模态前进。此轮式模态一般适用于在平坦地形条件下轮式高速前进(参见图3)、或在杂乱小障碍物地形条件下轮式高速适应性通过(参见图4)、或通过V形壕沟地形(参见图5)。
本实施例中,为了与上述三种地形条件对应,进一步将轮式模态分为低姿轮式模态、高姿轮式模态以及适应性轮式模态,其选择由姿态选择函数wheelmode ( δ P δ 2,...,δ η)来实现,即当wheelmode (O)的函数值取I时,采用低姿轮式;当wheelmode (O)的函数值取2时,采用高姿轮式;当wheelmode(O)的函数值取3时采用适应性轮式(参见图5)。当Hiode(O)函数值取2时,轮腿复合式移动平台选用腿式模态前进,此运动模态主要用于在非结构化复杂地形如野外、或灾区等条件下顺利行进(参见图6)。当Hiode(O)函数值取3时,轮腿复合式移动平台选用轮腿复合模态前进,此运动模态主要用于高低路或非结构化平坦地形条件下的通行(参见图7)。上述三种运动模态(轮式、腿式、轮腿复合式)构成了轮腿复合式移动平台的运动性基础,而上述三种运动模态又以单腿的各类简单运动模态为基础。(I. 2)建立单腿运动模态选择函数Iegmode ( ε 17 ε 2,ε 3,ε 4)。相应的,S1 = I, 2,3,4,以表示左前腿将采用1,2,3,4简单步态;ε 2 = 1,2,3,4,以表示右前腿将采用相应简单步态,ε 3 = 1,2,3,4,以表示左后腿将采用相应简单步态;ε 4 = 1,2,3,4,以表示右后腿将米用相应简单步态。具体而言,单腿简单步态依据前后腿结构的不同分为两种,分别称为后腿步态和前腿步态。每条腿具有三个关节自由度,其中髋关节具有两个自由度,膝关节具有一个自由度,同时每条腿上所配备轮具有一个轮自由度。后腿轮作为主动轮,前腿轮作为主动轮或者被动轮,这可以依据对动力的需求来决定。定义移动平台的坐标系,以移动平台的质心为原点,沿移动平台的纵轴指向头部方向为X轴,沿移动平台横轴指向左手边方向为Y轴,根据右手坐标准则确定Z轴。为方便表述,对各个腿的关节角统一进行符号定义,定义为ciu,i = l,2,3,4;j=1,2,3,其中i为腿的标示符,I表示左前腿、2表示右前腿、3表示左后腿、4表示右后腿;j为关节标示符,I表示髋关节横向摆动角、2表示髋关节纵向摆动角、3表示膝关节纵向摆动角。即在移动平台的后腿上,an,i = 3,4为髋关节的横向摆动即绕X轴的摆动角度,处于垂直向下时为0°,向外侧摆动角度为正,向内侧摆动角度为负;ai2,i = 3,4为髋关节的纵向摆动即绕Y轴的摆动角度,处于垂直向下时为0°,向前摆动角度为正,向后摆动角度为负;ai3,i = 3,4为膝关节的纵向摆动即绕Y轴的摆动角度,处于当小腿与大腿完全闭合时为0°,张开时为正角度(参见图8)。在移动平台的前腿上,a n,i = 1,2为髋关节的横向摆动即绕X轴的摆动角度,处于垂直向下时为0°,向外侧摆动角度为正,向内侧摆动角度为负;ai2,i = l,2为髋关节的纵向摆动即绕Y轴的摆动角度,处于垂直向下时为0°,向后摆动角度为正,向前摆动角度为负;ai3,i = 1,2为膝关节的纵向摆动即绕Y轴的摆动角度,处于当小腿与大腿完全闭合时为0°,张开时为正角度(参见图9)。本实施例中,前腿与后腿的长度相同,其中大腿长度为a,小腿长度为b,轮半径为r0相应的设障碍物的高度为h。那么,后腿的步态包括四种后腿步态I :主要用于轮腿复合式移动平台低姿轮式高速前进,步态的姿态角约束为CIij = O,i = 3,4 ;j = 1,2,3(参见图 10);后腿步态2 :主要用于轮腿复合式移动平台高姿轮式避障前进,步态的姿态角约束为αη = 0,a i2+a i3 = 90。,a i2 e
,i = 3,4(参见图 11);后腿步态3 :主要用于轮腿复合式移动平台在非结构化地形条件下轮式变结构适应性通行,步态的姿态角约束为a n G [-30。,60。], ai2+ai3 = 90。,ct i2 e
,i = 3,4(参见图 12);后腿步态4 :主要用于轮腿复合式移动平台在复杂地形下腿式前进,步态的姿态角约束为an e [-30°,60° ],a i2 e [-45°,90。],a i3 = [O。,135。],i = 3,4(参见图13)。前腿简单步态也包括四种前腿步态I :主要用于轮腿复合式移动平台低姿轮式高速前进,步态的姿态角约束为a U = O, i = 1,2 ; j = 1,2,3(参见图 14);前腿步态2 :主要用于轮腿复合式移动平台高姿轮式避障前进,步态的姿态角约束为αη = O, a i2+a i3 = 90。, a i2 e
,i = 1,2(参见图 15);前腿步态3 :主要用于轮腿复合式移动平台在非结构化地形下轮式变结构适应性通行,姿态角约束为α η ε [-30° , 60。], a i2+ a i3 = 90° , a i2 e [O° , 90。], i = I,2(参见图16);前腿步态4 :主要用于机器人在复杂地形下腿式前进,步态的姿态角约束为a ^ e [-30。,60。],a i2 e [-45。,90。],a i3 = [O。,135。],i = 1,2 (参见图 17)。轮式、腿式、轮腿复合式运动步态,与单腿简单运动步态的对应关系以及所适用的地形条件用下表描述
权利要求
1.一种轮腿复合式移动平台步态控制方法,其特征在于,步骤为 (1)初始模态建立运动模态选择函数mode( θ 1; Θ 2). . . , θ n)、单腿运动模态选择函数Iegmode ( ε ” ε 2,ε 3,ε 4); (I. I)运动模态选择函数mode ( Q1, Θ 2,· · ·,θ n):当mode (O)函数值取I时,轮腿复合式移动平台选用轮式模态前进;当Hiode(O)函数值取2时,轮腿复合式移动平台选用腿式模态前进;当Hiode(O)函数值取3时,轮腿复合式移动平台选用轮腿复合模态前进; (I. 2)单腿运动模态选择函数Iegmode ( ε ” ε 2,ε 3,ε 4) ε j = 1,2,3,4,以表示轮腿复合式移动平台左前腿将采用1,2,3,4简单步态;82= 1,2,3,4,以表示右前腿将采用相应简单步态;ε 3 = 1,2,3,4,以表示左后腿将采用相应简单步态;ε 4 = 1,2,3,4,以表示右后腿将采用相应简单步态;其中,后腿步态I主要用于轮腿复合式移动平台低姿轮式高速前进,后腿步态2主要用于轮腿复合式移动平台高姿轮式避障前进,后腿步态3主要用于轮腿复合式移动平台在非结构化地形条件下轮式变结构适应性通行,后腿步态4主要用于轮腿复合式移动平台在复杂地形下腿式前进;前腿步态I主要用于轮腿复合式移动平台低姿轮式高速前进,前腿步态2主要用于轮腿复合式移动平台高姿轮式避障前进,前腿步态3主要用于轮腿复合式移动平台在非结构化地形下轮式变结构适应性通行,前腿步态4主要用于机器人在复杂地形下腿式前进; (2)通过传感器实时采集路况上障碍物信息,分析判断后利用运动模态选择函数mode (Q1, Θ 2,. . .,θ n)、单腿运动模态选择函数Iegmode ( ε ^ ε 2,ε 3,ε 4)选择移动平台的行走姿态; (3)由现有行走姿态切换至步骤(2)中所选择的行走姿态。
2.根据权利要求I所述的轮腿复合式移动平台步态控制方法,其特征在于所述步骤(I. I)中将轮式模态分为低姿轮式模态、高姿轮式模态以及适应性轮式模态,其选择由姿态选择函数wheelmode ( δ δ 2, . . . , δ n)来实现;当wheelmode (Θ)的函数值取I时,采用低姿轮式;当wheelmode (Θ)的函数值取2时,采用高姿轮式;当wheelmode (Θ)的函数值取3时采用适应性轮式。
3.根据权利要求I所述的轮腿复合式移动平台步态控制方法,其特征在于,在所述步骤(I. 2)对单腿步态建立的步骤为 (1.2. I)先定义移动平台的坐标系,以移动平台的质心为原点,沿移动平台的纵轴指向头部方向为X轴,沿移动平台横轴指向左手边方向为Y轴,根据右手坐标准则确定Z轴;依据上述坐标系,设定姿态角Cti^i = I, 2, 3, 4; j = 1,2,3,其中i为腿的标示符,I表示左前腿、2表示右前腿、3表示左后腿、4表示右后腿;j为关节标示符,I表示髋关节横向摆动角、2表示髋关节纵向摆动角、3表示膝关节纵向摆动角; (I. 2. 2)设定前腿和后腿的步态 后腿步态I :步态的姿态角约束为a u = 0,i = 3,4; j = 1,2,3 ; 后腿步态2 :步态的姿态角约束为Ciil = 0,ai2+cii3 = 90°,ai2e
,i =.3,4 ; 后腿步态3 :步态的姿态角约束为a n e [-30° ,60。],a i2+a i3 = 90。,a i2 e
, i = 3,4 ; 后腿步态4:步态的姿态角约束为Ciil e [-30°,60° ],ai2e[-45°,90° ],ai3 =
, i = 3,4 ; 前腿步态I :步态的姿态角约束为a u = 0,i = 1,2; j = 1,2,3 ; 前腿步态2 :步态的姿态角约束为Ciil = 0,ai2+cii3 = 90°,ai2e
,i =1,2 ; 前腿步态 3:姿态角约束为 CtilG [-30。,60。],a i2+ a i3 = 90。,a i2 e
, i = 1,2 ; 前腿步态4:步态的姿态角约束为Ciil e [-30°,60° ],ai2e[-45°,90° ],ai3 =
,i = 1,2。
4.根据权利要求3所述的轮腿复合式移动平台步态控制方法,其特征在于,所述步骤(3)的具体切换过程为 (3. I)低姿轮式向高姿轮式切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态2与前腿步态2,相应的角度关系为= 1,2,3,4保持不变,a i2,i = 1,2,3,4同步增大到
之间的一个角度,同时ai3,i = 1,2,3,4同步变为90。-ai2; (3. 2)低姿轮式向变形轮式切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态3与前腿步态3,与之相应的角度关系为a n,i = I, 2,3,4同步变化到[-30°,60° ]之间的一个角度,ai2,i = 1,2,3,4同步增大到
之间的一个角度,同时ai3,i = 1,2,3,4同步变为90° - a i2 ; (3. 3)低姿轮式向腿式步态切换时,单腿简单步态切换过程是后腿步态I与前腿步态I同时切换为后腿步态4与前腿步态4,a n,i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,ai2,i = 1,2,3,4 分别在[-45。,90。]内进行调整,a i3,i = 1,2,3,4 分别在
内进行调整; (3. 4)低姿轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换; (3. 5)高姿轮式向变形轮式切换时,单腿简单步态切换过程是后腿步态2与前腿步态2同时切换为后腿步态3与前腿步态3,角度关系为a n,i = 1,2,3,4同步变化到[-30°,60° ]之间的一个角度,a i2,i = I, 2,3,4运动范围保持不变,a i3, i = I, 2,3,4同步变为90。-ai2; (3. 6)高姿轮式向腿式运动步态切换时,单腿简单步态切换过程是后腿步态2与前腿步态2同时切换为后腿步态4与前腿步态4,Ciil, i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,a i2,i = I, 2,3,4分别在[-45°,90° ]内进行调整,a i3,i = I, 2,3,4分别在
内进行调整; (3. 7)高姿轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换; (3. 8)变形轮式向腿式运动步态切换时,单腿简单步态切换过程是后腿步态3与前腿步态3同时切换为后腿步态4与前腿步态4,Ciil, i = 1,2,3,4分别在[-30°,60° ]内进行角度调整,a i2,i = I, 2,3,4分别在[-45°,90° ]内进行调整,a i3,i = I, 2,3,4分别在[O。,135° ]内进行调整; (3. 9)变形轮式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换;(3. 10)腿式向轮腿复合式运动步态切换时,根据地形条件,左、右后腿分别向后腿步态.2、4,左右前腿分别向前腿步态2、4或者左、右后腿分别向后腿步态4、2,左右前腿分别向前腿步态4、2切换。
全文摘要
本发明公开了一种轮腿复合式移动平台步态控制方法,其步骤为(1)初始模态建立运动模态选择函数mode(θ1,θ2,...,θn)、单腿运动模态选择函数legmode(ε1,ε2,ε3,ε4);(2)通过传感器实时采集路况上障碍物信息,分析判断后利用运动模态选择函数mode(θ1,θ2,...,θn)、单腿运动模态选择函数legmode(ε1,ε2,ε3,ε4)选择移动平台的行走姿态;(3)由现有行走姿态切换至步骤(2)中所选择的行走姿态。本发明具有原理简单、能够提高轮腿移动平台操控性和控制精准度、增强其适应能力等优点。
文档编号G05D1/02GK102841605SQ201210339690
公开日2012年12月26日 申请日期2012年9月14日 优先权日2012年9月14日
发明者谢海斌, 王奇, 史美萍, 戴斌, 程子龙, 朱效洲, 马磊, 黄安琪 申请人:中国人民解放军国防科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1