一种基于水泥生料燃烧的分解炉炉温快速优化控制方法与流程

文档序号:18950768发布日期:2019-10-23 02:11阅读:628来源:国知局

本发明属于自动化技术领域,涉及一种基于水泥生料燃烧的分解炉炉温快速优化控制方法。



背景技术:

化工过程是工业生产的一类重要分支,化工过程的生产质量是衡量一个企业产品合格率的重要途径,因此工厂一直都在攻克既快速又精准的控制方法,随着市场竞争的日益激烈,对生产工艺要求也是越来越高,模型预测控制和迭代学习控制等方法也已经满足不了现在的生产需求。



技术实现要素:

本发明主要是针对传统控制方法在基于水泥生料燃烧的分解炉炉温控制过程中所出现的系统响应大时滞、大惯性和生料分解不彻底等原因,造成的水泥生产量低效、产品纯度不够和废气废渣污染严重等问题,提出了一种基于水泥生料燃烧的分解炉炉温快速优化控制方法。

本发明首先针对复杂的水泥生料分解炉燃烧过程建立了分解炉炉温控制被控对象的状态空间模型,并定义系统约束输出和被控输出需要满足的实际生产约束条件。然后,针对系统的运行耗损定义过程预测和系统二次型滚动优化性能指标,设计水泥生料燃烧过程的分解炉炉温控制器。最终将本发明设计的控制器应用于水泥生料燃烧的分解炉炉温控制过程进行系统性能优化。本发明可以在不增加系统运行负担的基础上,增强化工过程响应能力,降低运维费用,并对水泥生料燃烧过程起到快速优化分解炉炉温控制的作用。

本发明方法的步骤包括:

步骤1、建立过程对象的状态空间模型,具体方法是:

1.1.首先采集过程对象的实时运行数据,建立处理过程模型,将带干扰过程描述为以下形式:

其中,

其中x(k+1)是k+1时刻状态,x(k)是k时刻状态,y(k)是k时刻系统控制输出,u(k)和u(k-1)分别是k和k-1时刻系统控制输入,v(k)和v(k-1)分别是k和k-1时刻可以测量的外部干扰,a,b,c,d,e,f是相应维数的系统矩阵,δ是后向差分算子。

1.2根据系统初始测量数据,得到系统的初始状态,定义如下:

{[xinitial]}={x0}

1.3设计系统约束输出和被控输出需要满足的实际生产约束:

ymin(k)≤y1(k)≤ymax(k)

umin(k)≤u(k)≤umax(k)

δumin(k)≤δu(k)≤δumax(k)

其中,ymin(k)和ymax(k)分别为k时刻的最小和最大约束输出值,umin(k)和umax(k)分别为k时刻的最小和最大控制输入值,δumin(k)和δumax(k)分别是k时刻的控制输入增量的最小和最大值。

1.4根据步骤1.3,变换其约束形式如下:

-y(k)+ymin(k)≤0;y(k)-ymax(k)≤0

-u(k)+umin(k)≤0;u(k)-umax(k)≤0

-δu(k)+δumin(k)≤0;δu(k)-δumax(k)≤0

1.5为了统一表达,步骤1.4中的状态变量约束形式可以转化为不等式形式g(ki)≤0,g(ki)表示状态量不等式转换的统一形式。

步骤2、设计被控对象的优化控制器,具体是:

2.1首先,针对系统的运行耗损预测如下:

其中,rs为系统运行耗损预测,l(τ)为系统每时刻运行耗损函数。

2.2设定系统的终端惩罚形式:

ps=vf(x(m))

其中,vf(x(td))是终端惩罚,x(td)是终端时间td的状态。

2.3设置通用的系统二次型滚动优化性能指标qs,形式如下:

其中,yref(k)是k时刻的参考输出,yw(k+1|k)是k时刻的对k+1时刻的预测输出。δu(k)是k时刻的控制变量增量,其中λu与λy是相应的权矩阵,td是设定的系统运行时间。

2.4由于系统设置考虑很多的相关因素,因此相对于传统方法会稍显复杂,为了能够克服这类状况,能够快速求解,设置快速控制方法,由于系统的性能目标是带有终端惩罚的形式,使用快速方法能够进一步优化控制系统,提升系统的性能指标。为了统一表达,改进的控制方法,形式如下:

x(0)=x0,g(ki)≤0

g(ki)+ηi=ξi

ui∈[umin,umax]

ηi≥0,ξi≥0,i=0,...,td-1

其中,ηi,ξi为松弛变量,ζ为设定的系数,ζ要足够大,以满足系统的收敛性,且ξi的值是要趋于0。ui为i时刻控制量。umin,umax为控制量最小值与最大值。x(0)为初始状态其值设置为x0,初始状态由传感器实时测量获取,i为适当维度的单位矩阵。

2.5在k时刻,可以通过求解系统设定问题步骤2.4,预测k+1时刻的状态,即通过测量系统状态向前预测一步。

2.6在k+1时刻,系统已经采集k时刻的状态,即可以通过状态变化的敏感性分析系统。

2.7令k=k+1,返回步骤2.5。在这种形式的求解下,当系统有新的测量结果,控制输入项就会在极短时间延迟或没有时间延迟的情况下更新,提升了系统的快速性。

2.8因此,可以通过求解步骤2.4的设定公式,就可以得到最优控制律,并可以计算出系统的最优控制变量u*

2.9在下一时刻,重复步骤2.1到2.8的方法,继续求解新的优化参数,得到最优控制变量u*,作用于被控系统,并依次循环。

本发明的有益效果:本发明提出了一种基于水泥生料燃烧的分解炉炉温快速优化控制方法。通过此种改进的技术手段,所得到的控制器具有更快的处理性能,同时保证控制装置运行在安全状态,使生产过程的工艺参数达到严格控制。有效地提高了传统控制方法的性能并保证了系统在受到扰动时仍然具有良好的控制性能,以及提高了系统的响应能力。

具体实施方式

以水泥生产系统中水泥生料燃烧的分解炉炉温控制过程为例:

分解炉的作用是使水泥生料在进窑之前高温分解,而稳定的分解炉炉温控制对水泥生料中的碳酸钙等物质的分解率是直接的影响同时决定后面水泥生产的效率和纯度。其中决定分解炉炉温变化的因素主要有水泥生料喂料量、喂煤量和炉内通风量,前两个变量通过人为控制很容易实现,而炉内通风量的控制是非常困难的。针对该实际过程,本实施例以分解炉内部反应过程作为系统被控对象,以分解炉炉温作为系统输出量,设定水泥生料中的碳酸钙等物质可稳定分解的温度作为系统设定输入量,通过分解炉输出温度和尾气成分含量设计过程控制器控制炉内通风口开度的过程输入。

步骤1、建立分解炉炉温控制系统的输入输出模型,具体是:

1.1首先采集分解炉炉温控制过程的输入输出数据,利用该数据建立该分解炉炉温控制过程的输入输出模型,将带干扰的过程描述为以下形式:

其中,

其中,x(k+1)是k+1时刻分解炉炉温控制系统状态量,x(k)是k时刻分解炉炉温控制系统状态量,y(k)是k时刻分解炉炉温值,u(k)和u(k-1)分别是k和k-1时刻分解炉通风口开度,v(k)和v(k-1)分别是k和k-1时刻可以测量的外部干扰,a,b,c,d,e,f是相应维数的系统矩阵,δ是后向差分算子。

1.2根据系统初始测量数据,得到分解炉的初始状态,定义如下:

{[xinitial]}={x0}

1.3设计分解炉炉温控制系统约束输出和被控输出需要满足的实际生产约束:

ymin(k)≤y1(k)≤ymax(k)

umin(k)≤u(k)≤umax(k)

δumin(k)≤δu(k)≤δumax(k)

其中,ymin(k)和ymax(k)分别为k时刻的最小和最大分解炉炉温约束,umin(k)和umax(k)分别为k时刻的最小和最大分解炉通风口开度,δumin(k)和δumax(k)分别是k时刻的分解炉通风口开度增量的最小和最大值。

1.4根据步骤1.3,变换其约束形式如下:

-y1(k)+ymin(k)≤0;y1(k)-ymax(k)≤0

-u(k)+umin(k)≤0;u(k)-umax(k)≤0

-δu(k)+δumin(k)≤0;δu(k)-δumax(k)≤0

1.5为了统一表达,步骤1.4中的分解炉状态变量约束形式可以转化为不等式形式g(ki)≤0,g(ki)表示分解炉状态不等式转换的统一形式。

步骤2、设计分解炉炉温控制系统的优化控制器,具体是:

2.1针对分解炉炉温控制系统的运行耗损预测如下:

其中,rs为分解炉炉温控制系统运行耗损预测,l(τ)为分解炉炉温控制系统每时刻运行耗损函数。

2.2设定分解炉炉温控制系统的终端惩罚形式:

ps=vf(x(m))

其中,vf(x(td))是终端惩罚,x(td)是终端时间td的状态。

2.3设置通用的分解炉炉温控制系统二次型滚动优化性能指标qs,形式如下:

其中,yref(k)是k时刻的分解炉炉温参考输出,yw(k+1|k)是k时刻的对k+1时刻的分解炉炉温预测输出。δu(k)是k时刻的分解炉通风口开度增量,其中λu与λy是相应的权矩阵,td是设定的系统运行时间。

2.4由于分解炉炉温控制系统设置考虑很多的相关因素,因此相对于传统方法会稍显复杂,为了能够克服这类状况,为了能够快速求解,设置快速控制方法,由于系统的性能目标是带有终端惩罚的形式,使用快速方法能够进一步优化分解炉炉温控制系统,提升系统的性能指标。为了统一表达,改进的分解炉炉温控制方法,形式如下:

x(0)=x0,g(ki)≤0

g(ki)+ηi=ξi

ui∈[umin,umax]

ηi≥0,ξi≥0,i=0,...,td-1

其中,ηi,ξi为松弛变量,ζ为设定的系数,ζ要足够大,以满足分解炉炉温控制系统的收敛性,且ξi的值是要趋于0。ui为i时刻分解炉通风口开度控制量。umin,umax为分解炉通风口开度控制量的最小值与最大值。x(0)为分解炉炉温控制系统初始状态其值设置为x0,初始状态由传感器实时测量获取,i为适当维度的单位矩阵。

2.5在k时刻,可以通过求解分解炉炉温控制系统设定问题步骤2.4,预测k+1时刻的分解炉炉温控制系统状态,即通过测量系统状态向前预测一步。

2.6在k+1时刻,分解炉炉温控制系统已经采集k时刻的分解炉炉内状态,即可以通过状态变化的敏感性分析分解炉炉温控制系统。

2.7令k=k+1,返回步骤2.5。在这种形式的求解下,当分解炉炉温控制系统有新的测量结果,分解炉炉温控制输入项就会在极短时间延迟或没有时间延迟的情况下更新,提升了系统的快速性。

2.8因此可以通过求解步骤2.4的设定公式,就可以得到最优分解炉通风口开度控制量,并可以计算出系统的最优分解炉通风口开度控制量u*

2.9在下一时刻,重复步骤2.1到2.8的方法,继续求解新的优化参数,得到最优分解炉通风口开度控制量u*,作用于水泥生料燃烧过程的分解炉炉温控制系统,并依次循环。

本发明提出一种新的优化控制方法,与传统方法控制效果相比,所提出的快速优化控制可以将化工过程限制在安全允许范围内,改进的控制方法可以在提升系统快速性的基础上改善系统的整体性能,在满足安全性的前提下,优化系统的运行损耗,提升系统的快速性。快速求解也能够有效缓系统运行约束,通过快速求解也能更好的保护系统,实现快速的系统控制,因此系统的快速性是一个重要的参考指标,可以在保证系统其他性能的基础上改善系统的响应能力,改善系统运行成本。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1