一种车辆的自动跟随方法、装置和车辆与流程

文档序号:24118866发布日期:2021-02-27 15:06阅读:120来源:国知局
一种车辆的自动跟随方法、装置和车辆与流程

[0001]
本发明实施方式涉及车辆控制技术领域,更具体地,涉及一种车辆的自动跟随方法、装置和车辆。


背景技术:

[0002]
近年来,随着科技的不断进步、对智慧生活的不断探索,人们对智能设备自动跟随功能的需求越来越大,比如智能跟随超市推车、智能跟随行李箱、智能跟随婴儿车、智能跟随平衡车、智能跟随汽车等等。智能跟随可以减少人力投入,提高工作效率。
[0003]
目前的自动跟随方法主要包括基于视觉的技术以及基于标签的技术,基于视觉的技术主要在是设备上搭载摄像头来扫描要跟随的物体(比如人腿部),建立3d立体图形,并建模进行计算,判断被跟随物体的角度、方位等,此方法算法复杂,效率不高。基于标签的技术主要使用超宽带(uwb)或蓝牙等作为实现方案。
[0004]
基于视频的跟随技术,结构复杂,算法复杂,价格昂贵。uwb技术精度高,但是造价较贵,且不通用,无法与手机进行互联。使用蓝牙具有精度低的缺点。


技术实现要素:

[0005]
本发明实施方式提出一种车辆的自动跟随方法、装置和车辆。
[0006]
本发明实施方式的技术方案如下:
[0007]
一种车辆的自动跟随方法,该方法包括:
[0008]
确定第一声音检测模块检测到从智能设备直达所述第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从所述智能设备直达所述第二声音检测模块的第二声音信号的第二时刻,其中所述第一声音信号和所述第二声音信号为智能设备同时发射的,所述第一声音检测模块和所述第二声音检测模块布置在车辆中;
[0009]
确定第一时刻与第二时刻的时间差;
[0010]
基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度;
[0011]
基于所述相对角度控制所述车辆跟随所述智能设备。
[0012]
在一个实施方式中,所述基于所述相对角度控制所述车辆跟随所述智能设备包括:
[0013]
当所述相对角度超过预先设定的角度范围时,控制所述车辆的朝向,以使所述相对角度调整到所述角度范围中;或
[0014]
当所述相对角度不等于预先设定的角度值时,控制所述车辆的朝向,以使所述相对角度调整为所述角度值。
[0015]
在一个实施方式中,所述基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定相对角度包括:
[0016]
基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定车辆与智能设备之间的相对角度其中
[0017]
在一个实施方式中,还包括:
[0018]
当车辆与智能设备之间的距离超过预先设定的距离范围时,控制所述车辆的速度,以使所述距离变换到所述距离范围中。
[0019]
一种车辆的自动跟随装置,该装置包括:
[0020]
第一确定模块,用于确定第一声音检测模块检测到从智能设备直达所述第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从所述智能设备直达所述第二声音检测模块的第二声音信号的第二时刻,其中所述第一声音信号和所述第二声音信号为智能设备同时发射的,所述第一声音检测模块和所述第二声音检测模块布置在车辆中;
[0021]
第二确定模块,用于确定第一时刻与第二时刻的时间差;
[0022]
角度确定模块,用于基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度;
[0023]
跟随模块,用于基于所述相对角度控制所述车辆跟随所述智能设备。
[0024]
在一个实施方式中,跟随模块,用于当所述相对角度超过预先设定的角度范围时,控制所述车辆的朝向,以使所述相对角度调整到所述角度范围中;或
[0025]
当所述相对角度不等于预先设定的角度值时,控制所述车辆的朝向,以使所述相对角度调整为所述角度值。
[0026]
在一个实施方式中,角度确定模块,用于基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定车辆与智能设备之间的相对角度其中
[0027]
在一个实施方式中,跟随模块,还用于当车辆与智能设备之间的距离超过预先设定的距离范围时,控制所述车辆的速度,以使得所述距离变换到所述距离范围中。
[0028]
一种车辆,包括:
[0029]
第一声音检测模块;
[0030]
第二声音检测模块;
[0031]
控制器,用于确定第一声音检测模块检测到从智能设备直达所述第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从所述智能设备直达所述第二声音检测模块的第二声音信号的第二时刻,其中所述第一声音信号和所述第二声音信号为智能设备同时发射的;确定第一时刻与第二时刻的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度;基于所述相对角度控制所述车辆跟随所述智能设备。
[0032]
在一个实施方式中,所述第一声音检测模块和所述第二声音检测模块集成为声音检测单元,所述声音检测单元布置在所述车辆的车身上。
[0033]
一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的车辆的自动跟随方法。
[0034]
从上述技术方案可以看出,本发明实施方式基于相对角度控制车辆跟随智能设备,可以实现精确跟随,而且降低了成本。
附图说明
[0035]
图1为本发明智能设备间的相对角度确定方法的示范性流程图。
[0036]
图2为本发明智能设备间相对角度确定的原理示意图。
[0037]
图3为本发明智能设备间相对角度的计算原理图。
[0038]
图4为本发明确定一对直达信号的第一示范性示意图。
[0039]
图5为本发明确定一对直达信号的第二示范性示意图。
[0040]
图6为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第一示范性布置示意图。
[0041]
图7为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第二示范性布置示意图。
[0042]
图8为本发明第一智能设备和第二智能设备的相对定位示意图。
[0043]
图9为本发明在智能设备界面中展示相对角度的示意图。
[0044]
图10为本发明智能设备间相对定位的示范性处理流程图。
[0045]
图11为本发明车辆自动跟随的方法流程图。
[0046]
图12为本发明车辆自动跟随的示意图。
[0047]
图13为本发明车辆测距的示范性示意图。
[0048]
图14为本发明车辆自动跟随装置的示范性结构图。
具体实施方式
[0049]
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。
[0050]
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据
……”
是指“至少根据
……
,但不限于仅根据
……”
。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
[0051]
为不额外添加硬件地、利用软件实现智能设备间相对方向定位,使得该相对定位具备普适性,不同厂家的设备都能实现互操作和互兼容,并基于此探索智能设备的创新应用,本发明实施方式提出一种基于声音(优选为超声)的智能设备间相对方向识别方案,无需额外添加硬件,可以利用软件实现两台智能设备间的相对方向识别,定位结果准确且可靠。首先,智能设备(intelligent device)是指任何一种具有计算处理能力的设备、器械或
者机器。
[0052]
图1为本发明智能设备间的相对角度确定方法的示范性流程图。该方法适用于第一智能设备,第一智能设备包括第一声音检测模块和第二声音检测模块。第一声音检测模块和第二声音检测模块在第一智能设备中被固定安装。比如,第一声音检测模块可以实施为布置在第一智能设备中的一个麦克风或一组麦克风阵列。同样地,第二声音检测模块可以实施为布置在第一智能设备中的、不同于第一声音检测模块的一个麦克风或一组麦克风阵列。
[0053]
如图1所示,该方法包括:
[0054]
步骤101:使能第一声音检测模块检测第二智能设备发出并直达第一声音检测模块的第一声音信号,使能第二声音检测模块检测第二智能设备发出并直达第二声音检测模块的第二声音信号,其中第一声音信号和第二声音信号为第二智能设备同时发出的。
[0055]
在这里,第二智能设备可以发出一个声音信号或同时发出多个声音信号。
[0056]
比如:当第二智能设备发出一个声音信号时,第一智能设备中的第一声音检测模块和第二声音检测模块分别检测该声音信号。其中:第一声音检测模块检测到的、该声音信号直达第一声音检测模块的检测信号被确定为第一声音信号;第二声音检测模块检测到的、该声音信号直达第一声音检测模块的检测信号,被确定为第二声音信号。
[0057]
再比如,当第二智能设备同时发出多个声音信号时,比如发出一个超声波信号,一个可听声音信号。第一智能设备中的第一声音检测模块适配于检测超声波信号,第二声音检测模块适配于检测可听声音信号。第一声音检测模块检测该超声波信号,第二声音检测模块该可听声音信号。其中:第一声音检测模块检测到的、该超声波信号直达第一声音检测模块的检测信号被确定为第一声音信号;第二声音检测模块检测到的、该可听声音信号直达第二声音检测模块的检测信号,被确定为第二声音信号。
[0058]
换句话说,第一声音信号和第二声音信号,可以为第一声音检测模块和第二声音检测模块针对第二智能设备发出的同一声音信号的分别检测信号。或,第一声音信号和第二声音信号,可以为第一声音检测模块和第二声音检测模块针对第二智能设备同时发出的不同声音信号的分别检测信号。
[0059]
步骤102:确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差。
[0060]
在这里,第一智能设备(比如,第一智能设备中的cpu)可以记录第一声音信号的接收时刻以及第二声音信号的接收时刻,并计算这两者之间的时间差。
[0061]
步骤103:基于第一声音检测模块与第二声音检测模块之间的距离以及时间差,确定第一智能设备与第二智能设备之间的相对角度。
[0062]
比如,可以由第一智能设备的cpu执行步骤103。
[0063]
在一个实施方式中,步骤103中确定第一智能设备与第二智能设备之间的相对角度包括:基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定第一智能设备与第二智能设备之间的相对角度其中其中,步骤102中确定出的时
间差的值可以为正数,也可以为负数。当所述时间差的值为正数时,第二声音信号的接收时刻早于第一声音信号的接收时刻,因此第一智能设备与第二智能设备之间的相对角度φ通常为锐角;当时间差的值为负数时,第一声音信号的接收时刻早于第二声音信号的接收时刻,因此第一智能设备与第二智能设备之间的相对角度φ通常为钝角。
[0064]
在本发明实施方式中,第一声音信号为自第二智能设备直达第一声音检测模块的信号,第二声音信号为自第二智能设备直达第二声音检测模块的信号。实际上,无论是第一声音检测模块还是第二声音检测模块,都可能收到自第二智能设备发出且非直达的信号(比如,经过障碍物的一次反射或多次发射)。因此,如何从接收到的多个信号中确定出直达信号具有显著意义。
[0065]
申请人发现:通常情况下,每个声音检测模块的接收信号流(steam)都包含直达信道与反射信道。可以依据如下原则简单且便利地确定直达信道:在声音检测模块检测到的所有信号中,直达信道的信号强度一般是最强的。因此,在一个实施方式中,该方法还包括:将第一声音检测模块接收第二智能设备的声音信号流中的、在预定时间窗口内强度大于预定门限值的声音信号,确定为所述第一声音信号;将第二声音检测模块接收第二智能设备的声音信号流中的、在所述预定时间窗口内强度大于所述预定门限值的声音信号,确定为所述第二声音信号。
[0066]
图4为本发明确定一对直达信号的第一示范性示意图。在图4中,第一声音检测模块检测到的声音信号流为steam1,steam1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值为t。可见,在时间窗口90的范围内,steam1中的脉冲信号50的信号强度大于门限值t。第二声音检测模块检测到的声音信号流为steam2,steam2包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值同样为t。可见,在时间窗口90的范围内,steam2中的脉冲信号60的信号强度大于门限值t。因此,确定脉冲信号50为第一声音信号;脉冲信号60为第二声音信号。
[0067]
另外,申请人还发现:可以综合考虑以下两个原则准确地确定直达信道:原则(1)、在声音检测模块检测到的所有信号中,直达信道的信号强度一般是最强的;原则(2)、联合判别法:两条直达信道信号(第一声音信号和第二声音信号)的到达时间差所换算出的距离差d不应大于第一声音检测模块和第二声音检测模块之间的距离。
[0068]
因此,在一个实施方式中,该方法还包括:在第一声音检测模块检测第二智能设备的声音信号流中确定出强度大于预定门限值的声音信号,以形成第一候选信号集;在第二声音检测模块检测第二智能设备的声音信号流中确定出强度大于所述预定门限值的声音信号,以形成第二候选信号集;确定第一候选信号集中的每个声音信号的接收时刻与第二候选信号集中的每个声音信号的接收时刻之间的各自的时间差;将所述时间差小于m的一对声音信号,确定为所述第一声音信号和所述第二声音信号,其中m=(d/c),d为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。
[0069]
图5为本发明确定一对直达信号的第二示范性示意图。在图5中,第一声音检测模块检测到的声音信号流为steam1,steam1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值为t。可见,在steam1中,脉冲信号50的信号强度大于门限值t,因此第一候选信号集包含脉冲信号50。第二声音检测模块检测到的声音信号流为steam2,steam1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值同样为t。可见,在steam2中,脉冲
信号60和脉冲信号70的信号强度都大于门限值t,因此第二候选信号集包含脉冲信号60和脉冲信号70。而且,确定第一候选信号集中的脉冲信号50与第二候选信号集中的脉冲信号60的接收时刻之间的时间差d1,以及确定第一候选信号集中的脉冲信号50与第二候选信号集中的脉冲信号70的接收时刻之间的时间差d2。假定d1小于m,d2大于m,其中m=(d/c),d为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。因此,将与d1相关的一对声音信号中的脉冲信号50确定为第一声音信号,且该对声音信号中的脉冲信号60确定为第二声音信号。
[0070]
优选地,第一声音信号和第二声音信号为具有码分多址格式的超声波且包含第二智能设备的媒体访问控制地址(mac)。因此,第一智能设备可以基于包含在声音信号中的第二智能设备的mac地址,准确识别声音信号的来源。当环境中存在多个发出声音信号的声源时,第一智能设备基于提取声音信号中的mac地址,可以准确利用来自于同一声源的两个直达信号确定与该声源的相对角度,而不会受到其它声源的干扰。
[0071]
本发明实施方式还提出了一种智能设备间的相对角度确定方法。该方法适用于第一智能设备,所述第一智能设备包括第一声音检测模块和第二声音检测模块,该方法包括:确定第二智能设备发出的超声波信号直达第一声音检测模块的第一时刻;确定超声波信号直达第二声音检测模块的第二时刻;确定第一时刻与第二时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及时间差,确定第一智能设备与第二智能设备之间的相对角度。
[0072]
在一个实施方式中,所述确定第一智能设备与第二智能设备之间的相对角度包括:基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定第一智能设备与第二智能设备之间的相对角度其中
[0073]
在一个实施方式中,该方法还包括下列处理中的至少一个:
[0074]
(1)、将第一声音检测模块接收第二智能设备的超声波信号流中的、在预定时间窗口内强度大于预定门限值的超声波信号,确定为直达第一声音检测模块的超声波信号,将接收到该直达第一声音检测模块的超声波信号的时刻确定为所述第一时刻;将第二声音检测模块接收第二智能设备的超声波信号流中的、在所述预定时间窗口内强度大于所述预定门限值的超声波信号,确定为直达第二声音检测模块的超声波信号,将接收到该直达第二声音检测模块的超声波信号的时刻确定为所述第二时刻。
[0075]
(2)、在第一声音检测模块检测第二智能设备的超声波信号流中确定出强度大于预定门限值的超声波信号,以形成第一候选信号集;在第二声音检测模块检测第二智能设备的超声波信号流中确定出强度大于所述预定门限值的超声波信号,以形成第二候选信号集;确定第一候选信号集中的每个超声波信号的接收时刻与第二候选信号集中的每个超声波信号的接收时刻之间的各自的时间差;将所述时间差小于m的一对超声波信号的接收时刻,确定为所述第一时刻和第二时刻,其中m=(d/c),d为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。
[0076]
下面对本发明的相对定位的原理和计算过程进行示范性说明。图2为本发明智能
设备间相对角度确定的原理示意图。图3为本发明智能设备间相对角度的计算原理图。
[0077]
如图2所示,布置在智能设备a底部的麦克风a1发射超声信号,该超声信号包含智能设备a的mac地址,智能设备b(图2中没有示出)具有相隔布置的两个麦克风,分别为麦克风b1和麦克风b2。其中:麦克风b1接收该超声信号的直达信号l1,麦克风b2接收该超声信号的直达信号l2。该超声信号经过障碍物发射后到达麦克风b1和麦克风b2的非直达信号,不参与后续的相对角度计算。
[0078]
由于智能设备较小,特别是两台智能设备相距较远时,因此直达信号l1、l2可以视为平行线。如图3所示,l1、l2分别表示智能设备b的麦克风b1、麦克风b2接收到的直达信号(不是经障碍物反射的信号);d为麦克风b1和麦克风b2之间的距离。比如,如果麦克风b1和麦克风b2分别布置在智能设备b的上下两端,那么d可以为智能设备b的长度;d为l1和l2的距离差,运用信号的相关算法可以确定直达信号l1相对于直达信号l2的延迟时间差t,可以基于延迟时间差t计算出d,其中d=t*c,c为声音在介质(比如空气)中的传播速度;θ为辅助角度,其中因此,可以计算出智能设备a与智能设备b的相对角度其中
[0079]
优选地,智能设备a与智能设备b可以实施为下列中的至少一个:智能手机;平板电脑;智能手表;智能手环;智能音箱;智能电视;智能耳机;智能机器人,等等。可以在智能设备的多个位置处布置第一声音检测模块和第二声音检测模块。
[0080]
图6为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第一示范性布置示意图。在图6中,第一声音检测模块18和第二声音检测模块19分别布置在智能设备在长度方向上的两端,因此可以直接将智能设备的长度d确定为第一声音检测模块18和第二声音检测模块19之间的距离。图7为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第二示范性布置示意图。在图7中,第一声音检测模块18和第二声音检测模块19分别布置在智能设备在宽度方向上的两端,因此可以直接将智能设备的宽度d确定为第一声音检测模块18和第二声音检测模块19之间的距离。
[0081]
以上示范性描述了第一声音检测模块和第二声音检测模块在智能设备中的布置示意图,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
[0082]
实际上,目前智能设备通常都具有两组麦克风,可以将这两组麦克风作为第一声音检测模块和第二声音检测模块应用在本发明实施方式中,而无需在硬件上改动智能设备。下面描述基于本发明实施方式利用超声计算智能设备间的相对角度的典型实例。
[0083]
图8为本发明第一智能设备和第二智能设备的相对定位示意图。图10为本发明智能设备间相对定位的示范性处理流程图。在图7中,示意出检测声音信号的两组合麦克风的各自的处理路径,其中,模/数转换器(analog-to-digital converter,adc)是将连续变量的模拟信号转换为离散的数字信号的器件;带通滤波器(band-pass filter,bpf)是允许特定频段的波通过同时屏蔽其他频段的设备。基于超声的两台智能设备间相对方向识别步骤包括:
[0084]
第一步:第一智能设备发射超声格式的定位信号,该定位信号包含智能设备1的
mac地址。第二步:第二智能设备的两组麦克风分别检测定位信号,从各自检测到的定位信号中解析出mac地址,并基于mac地址确认各自检测到的定位信号源自同一声源。第三步:第二智能设备基于自身所包含的两组麦克风分别检测出的、针对定位信号的两个直达信号之间的时间差计算出这两个直达信号的距离差d。第四步:第二智能设备计算则信号入射角度则信号入射角度即为第一智能设备与第二智能设备的相对角度,其中d为第二智能设备中这两组麦克风的距离。第五步:第二智能设备在自身的显示界面上显示相对角度从而提示用户第一智能设备的相对方向。比如,图9为本发明在智能设备界面中展示相对角度的示意图。
[0085]
举例说明,假定在图8所示的环境中,第一智能设备具体实施为智能音箱,第一智能设备具体实施为智能手机。步骤一:该智能音箱发射超声信号,该超声信号包含智能音箱的mac地址,且为基于cdma码分多址技术架构的信号。步骤二:智能手机的两组麦克风阵列接收超声信号并解算出智能音箱的mac地址,同时,智能手机解算出两组麦克风阵列的两个直达信号之间的距离差d。其中:假定两组克风阵列的各自接收信号流stream1和stream2中,分别存在信号强度峰值大于门限值t的直达信号,因此满足原则1;再假定这两个直达信号的到达时间差计算对应于该δt的d,其中两组麦克风距离d为已知(即手机长度),假定为0.145m,可见d<d,因此满足原则2。因此,可以选定这两个直达信号计算相对角度,其中d=0.014(m)。步骤三:智能手机计算那么信号入射角度智能手机在自己的显示屏幕上显示角度84.4
°
,即智能音箱在智能手机的84.4
°
方向。
[0086]
利用两个智能设备间相对方向的识别方法,可进一步获得两个智能设备间的相对距离。设想如下场景:有至少两个智能设备,其中,至少一个智能设备a,用于发射超声定位信号,该超声定位信号包含智能设备a的mac地址;至少一个智能设备b,用于接收超声定位信号并解算信号入射角度,并在进一步发生移动后计算与智能设备a的相对距离。
[0087]
为了满足在小空间应用场景里,需要控制成本、快速布设、使用移动终端即实现室内人员精准定位的需求,本发明还提出了一种小空间简易布设的室内定位方法和系统。室内定位系统包括布置在室内且作为声音源的多个智能设备以及用于接收声音的被定位移动终端。每个声音源具有各自的布置位置,用于发送声音格式的(优选为超声)定位信号,该信号包含智能设备的mac地址。
[0088]
被定位移动终端接收并解算各个直达的定位信号的入射角度,从而获得请求定位用户的相对位置,并将该相对位置对应到云端室内地图中,实现一个室内环境中各个请求定位用户位置共享。
[0089]
具体地,基于上述关于相对角度的详细计算过程描述,本发明实施方式还提出了基于相对角度的车辆自动跟随方法。
[0090]
图11为本发明车辆的自动跟随方法流程图。基于图11方法,可以实现车辆跟随智能设备(比如,用户的手持手机)。
[0091]
如图11所示,该方法包括:
[0092]
步骤1101:确定第一声音检测模块检测到从智能设备直达第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从智能设备直达第二声音检测模块的第二声音信号的第二时刻,其中第一声音信号和第二声音信号为智能设备同时发射的,第一声音检测模块和第二声音检测模块布置在车辆中。
[0093]
智能设备可以发出一个声音信号或同时发出多个声音信号。换句话说,第一声音信号和第二声音信号,为第一声音检测模块和第二声音检测模块针对智能设备发出的同一声音信号的分别检测信号。或,第一声音信号和第二声音信号,为第一声音检测模块和第二声音检测模块针对智能设备同时发出的不同声音信号的分别检测信号。优选的,智能设备发出的声音信号实施为超声波信号。
[0094]
第一声音检测模块和第二声音检测模块布置在车辆中。优选的,第一声音检测模块和所述第二声音检测模块集成为声音检测单元。声音检测单元布置在车辆的车身上。比如,布置在车顶的中心位置、车辆前玻璃框架上或车辆前部的保险杠上,等等。具体地,第一声音检测模块和第二声音检测模块分别可以实施为麦克风或麦克风阵列。
[0095]
步骤1102:确定第一时刻与第二时刻的时间差。
[0096]
步骤1103:基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度。
[0097]
在这里,基于第一声音检测模块和第二声音检测模块之间的距离以及所述时间差,可以确定出包含第一声音检测模块和第二声音检测模块的声音检测单元与智能设备之间的相对角度。
[0098]
当声音检测单元布置在车顶的中心位置、车辆前玻璃框架中心位置或车辆前部保险杠中点等车辆整体框架的中轴线上时,可以将该相对角度直接确定为车辆与智能设备之间的相对角度。当声音检测单元的布置位置与车辆整体框架的中轴线具有偏置角度时,利用偏置角度校正相对角度,并将校正后角度确定为车辆与智能设备之间的相对角度。
[0099]
其中,步骤1101~步骤1103可以由专门的运算器执行,或由车辆的控制器(比如整车控制器)执行。
[0100]
步骤1104:基于所述相对角度控制所述车辆跟随所述智能设备。
[0101]
比如,步骤1104可以由车辆的控制器(比如整车控制器)基于所述相对角度控制所述车辆跟随所述智能设备。
[0102]
在一个实施方式中,步骤1104中基于相对角度控制所述车辆跟随所述智能设备包括:当所述相对角度超过预先设定的角度范围时,控制所述车辆的朝向,以使所述相对角度调整到所述角度范围中;或,当所述相对角度不等于预先设定的角度值时,控制所述车辆的朝向,以使所述相对角度调整为所述角度值。
[0103]
比如,当步骤1101~步骤1103由专门的运算器执行时,该专门的运算器将计算出的相对角度发送(比如,通过车内can总线,等等)到车辆的控制器(比如整车控制器)。车辆的控制器(比如整车控制器)判断所述相对角度是否在预先设定的角度范围之内,如果是,则不执行角度调整;否则,基于该相对角度发出车辆控制命令,以调整车辆与智能设备之间
的相对角度到预定的角度范围。
[0104]
在一个实施方式中,所述基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定相对角度包括:基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定车辆与智能设备之间的相对角度其中
[0105]
在一个实施方式中,还包括:当车辆与智能设备之间的距离超过预先设定的距离范围时,控制所述车辆的速度,以使得所述距离变换到所述距离范围中。其中,可以基于多种方式确定车辆与智能设备之间的距离。比如,利用超声测距方式。
[0106]
图13为本发明车辆测距的示范性示意图。测距模块1包含第一超声波发送器11、第一超声波接收器12和计算单元13,测距模块1中保存有一个预设的时间值δt(比如,可以在计算单元13中保存该时间值δt)。测距模块2包含第二超声波接收器21和第二超声波发送器22,测距模块2中保存有该预设的时间值δt。其中:
[0107]
第一超声波发送器11,用于发送第一超声波信号;第二超声波接收器21,用于接收该第一超声波信号;第二超声波发送器22,用于在第二超声波接收器21接收第一超声波信号的时刻起,再经过该时间值δt的时刻发送第二超声波信号;第一超声波接收器12,用于接收第二超声波信号;计算单元13,用于基于在超声波信号发射单元1记录的、第一超声波发送器11发送第一超声波信号的第一时刻,在超声波信号发射单元1记录的、第一超声波接收器12接收第二超声波信号的第二时刻,以及该时间值δt计算测距模块1与测距模块2之间的距离。
[0108]
第一超声波信号中可以携带测距模块1的标识信息,第二超声波信号中可以携带测距模块2的标识信息,从而可以区分第一超声波信号和第二超声波信号。
[0109]
具体地,测距模块1和测距模块2分别保存相同的时间值δt。测距模块1基于本地时钟记录第一超声波发生器11发送第一超声波信号的时刻t1。第一超声波信号经过时间t由测距模块2的第二超声波接收器21接收。然后,测距模块2的第二超声波发送器22在第二超声波接收器21接收到第一超声波信号的时刻起,经过时间δt后再发送第二超声波信号。在测距模块1和测距模块2之间,超声波在空气中传播经历的路径相同,因此第二超声波信号经过时间t由测距模块1的第一超声波接收器12接收。测距模块1基于本地时钟记录第一超声波接收器12接收第二超声波信号的时刻t2。那么,t+δt+t=(t2-t1)。因此,超声波在测距模块1和测距模块2之间的空气中传播的时间t为:t=(t2-t1-δt)/2。因此,测距模块1与测距模块2之间的距离l为:l=c*t,其中c为超声波在空气中传播的速度,为常数。δt为预设值,其取值范围可以为1毫秒到50秒之间。
[0110]
例如:测距模块1发出测距超声波m,从发出测距超声波m到再次接收到测距模块2回复的超声波n的时间差为0.25s,即t2-t1为0.25s,已知测距模块2处理测距超声波m的预设时间δt为0.05s,则测距超声波m和回复超声波n在测距模块1到测距模块2之间单程传播的时间为0.1s,超声波在空气中传播的速度为350m/s,则可以计算出测距模块1与测距模块2之间的距离为350*0.1=35米。
[0111]
在一个实施方式中,测距模块1,还可以将计算单元13计算出的测距模块1与测距
模块2之间的距离发送到测距模块2。比如,超声波信号发射单元1可以经由第一超声波发送器11,将包含该距离的超声波信号发送到测距模块2的第二超声波接收器21。测距模块2通过解析该超声波信号,可以获知测距模块2与测距模块1之间的距离。
[0112]
在一个实施方式中,测距模块1中还包括报警单元14;计算单元13,还用于当测距模块1与测距模块2之间的距离超过预先设定的门限值时,向报警单元14发送报警命令;报警单元14,用于根据报警命令发出报警信号。比如,报警信号可以为光报警、声音报警,振动报警,等等。
[0113]
在一个实施方式中,测距模块2还包括报警单元23。报警单元23,用于当测距模块1与测距模块2之间的距离超过预先设定的门限值时,发出报警信号。比如,报警信号可以为光报警、声音报警,振动报警,等等。
[0114]
可见,本发明无需在测距模块1和测距模块2之间发送同步时间即可实现测距模块1和测距模块2之间的测距,因此本发明实施方式实现了免同步时钟的超声波测距。测距模块1的计算单元13计算出与测距模块2之间的距离后,可以将该距离承载在超声波信号中发送到测距模块2,从而测距模块2可以获取该距离。
[0115]
具体地,可以将测距模块1部署在车辆中,测距模块2部署在智能设备中,从而实现车辆与智能设备之间的测距。而且,还可以将测距模块2部署在车辆中,测距模块1部署在智能设备中,同样可以实现车辆与智能设备之间的测距。车辆的控制器(比如整车控制器)基于该距离发出车辆控制命令,以调整车辆与智能设备之间的距离到预定的距离范围。
[0116]
图13所示测距方式仅为示范性描述。实际上,还可以其它测距方式,比如超声雷达测距。
[0117]
图12为本发明车辆自动跟随的示意图。
[0118]
在图12中,智能设备140持续或周期性地发出声音信号(优选为超声波)。布置在车辆130上的声音检测单元131包含第一声音检测模块132、第二声音检测模块133和运算模块134。第一声音检测模块132检测该声音信号中的直达声音信号,称为第一声音信号;第二声音检测模块133检测该声音信号中的直达声音信号,称为第二声音信号,其中第一声音信号和第二声音信号是智能设备140在同一时刻发送出的。运算模块134确定第一时刻与第二时刻的时间差;基于第一声音检测模块132与第二声音检测模块133之间的距离以及该时间差,确定车辆与所述智能设备之间的相对角度可见,声音检测单元131可以持续或周期性地检测出车辆130与智能设备140之间的相对角度而且,声音检测单元131将该相对角度发送到车辆130的整车控制器135。
[0119]
在一个实施例中,整车控制器135中预先设置跟随角度范围。整车控制器135判断相对角度是否位于该跟随角度范围,如果是,则不执行角度调整操作,如果不是,则生成车辆方向控制指令以控制所述车辆的朝向,使得后续检测到的相对角度变换到角度范围中。
[0120]
比如,跟随角度范围为[30度~60度],当整车控制器135发现当前时刻的相对角度为70度,超出该角度范围时,则控制车辆的朝向以降低相对角度。在车辆转向过程中,声音检测单元131持续计算并发送相对角度到整车控制器135。当整车控制器135发现调整后的相对角度回到跟随角度范围中后,则控制停止车辆转向。
[0121]
在一个实施例中,整车控制器135中预先设置有跟随角度值。整车控制器135判断相对角度是否等于跟随角度值,如果是,则不执行角度调整操作,如果不是,则生成车辆方向控制指令以控制所述车辆的朝向,使得后续检测到的相对角度等于跟随角度值。比如,跟随角度值60度,当整车控制器135发现当前时刻的相对角度为40度,超出该角度范围时,则控制车辆的朝向以降低相对角度(比如,以3度为调整量)。在车辆转向过程中,声音检测单元131持续计算并发送相对角度到整车控制器135。当整车控制器135发现调整后的相对角度等于跟随角度值后,则控制停止车辆转向。
[0122]
以上示范性描述了基于相对角度的车辆自动跟随实例,本领域技术人员可以意识到,这种描述仅是示范性的,不用于限定本发明的保护范围。
[0123]
图14为本发明车辆自动跟随装置的示范性结构图。
[0124]
第一确定模块,用于确定第一声音检测模块检测到从智能设备直达所述第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从所述智能设备直达所述第二声音检测模块的第二声音信号的第二时刻,其中所述第一声音信号和所述第二声音信号为智能设备同时发射的,所述第一声音检测模块和所述第二声音检测模块布置在车辆中;
[0125]
第二确定模块,用于确定第一时刻与第二时刻的时间差;
[0126]
角度确定模块,用于基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度;
[0127]
跟随模块,用于基于所述相对角度控制所述车辆跟随所述智能设备。
[0128]
在一个实施方式中,跟随模块,用于当所述相对角度超过预先设定的角度范围时,控制所述车辆的朝向,以使所述相对角度调整到所述角度范围中;或
[0129]
当所述相对角度不等于预先设定的角度值时,控制所述车辆的朝向,以使所述相对角度调整为所述角度值。
[0130]
在一个实施方式中,角度确定模块,用于基于确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,d为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定车辆与智能设备之间的相对角度其中
[0131]
在一个实施方式中,
[0132]
跟随模块,还用于当车辆与智能设备之间的距离超过预先设定的距离范围时,控制所述车辆的速度,以使得所述距离变换到所述距离范围中。
[0133]
本发明还提出了一种车辆,包括:第一声音检测模块;第二声音检测模块;控制器,用于确定第一声音检测模块检测到从智能设备直达所述第一声音检测模块的第一声音信号的第一时刻,确定第二声音检测模块检测到从所述智能设备直达所述第二声音检测模块的第二声音信号的第二时刻,其中所述第一声音信号和所述第二声音信号为智能设备同时发射的;确定第一时刻与第二时刻的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定车辆与所述智能设备之间的相对角度;基于所述相对角度控制所述车辆跟随所述智能设备。
[0134]
在一个实施方式中,所述第一声音检测模块和所述第二声音检测模块集成为声音
检测单元,所述声音检测单元布置在所述车辆的车身上。
[0135]
所述智能设备包括智能手表、智能手环、智能手机、个人数字助理、智能脚环或智能背心,等等。车辆可以适用于各种智能跟随车辆,比如智能跟随超市推车、智能跟随行李箱、智能跟随婴儿车、智能跟随平衡车、智能跟随汽车等等;智能跟随垃圾清洁车;智能跟随物流机器人;智能跟随医用护理小车等等。
[0136]
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明上述各实施例中实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(read-only memory,简称rom)、随机存取存储器(random access memory,简称ram)、磁碟或者光盘等。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如rom/ram、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
[0137]
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1