一种采用手环及智能家居红外模块的制作方法_3

文档序号:9374439阅读:来源:国知局
作原理:本话筒的工作原理与常见的无线话筒电路基本相同,但连线及音质效果大有改进。电路见附图1,Q3与L1、C5、C6等构成FM高频振荡电路,调整L1、C5值可改变工作频率。C6是维持振荡的反馈电容。话筒信号不像以往那样从三极管基极输入,而是将话筒接在发射极上,当话筒自感电流随声音大小变化时,Q3的工作电流也会随之变化,Q3节电容Cbe同时变值,Cbe与C4串联后再与LC回路并联,因此,实现了调频。MIC的这种接法完全避免了音频信号经过耦合电容的失真,因此,本话筒的频响范围宽,音质纯正,工作稳定,即使手触天线也不会影响LC振荡频率。
[0088]元件选择制作:振荡管Q3选择fT>1000MHz、Icm彡10Ma, β值较大的高频管,如C6355、C6358、BFR96等。9018的Icm只有50mA,但是可根据实际选用;MIC选用600 Ω的动圈式话筒,目前中高档有线话筒多为此类;LI内径为5mm,用Φ0.5mm漆包线空芯绕5T而成;发射天线可直接使用成品天线,也可自制:线圈部分内径为1cm,空芯绕15T并拉长至3cm,直伸部分为7cm,用热缩胶套装上加热而成,也可用一根约1cm的软导线代替。
[0089]安装与调试:元件安装完毕,检查无误后,接通电源,用一台袖珍调频收音机作接收机。值得注意的是带射频输出的VCD严重干扰接收效果,因此,必须给射频调制器加装电源开关,使用AV端子播放节目。调节FM接收机及LI匝距,使收发频率相应,必要时将C5换值。收音机输出的音频信号由大插头输送到VCD或扩音机进行功率放大。发射距离与收音机的灵敏度有很大关系,但一般都多10米。
[0090]智能家居中控系统的多普勒语音采集装置电路图,工作原理如图2所示,图中220V的电网电压经C4降压,D2、D1半波整流、Cl滤波以后,再经过R6和V1、DW1、Rl、C5组成的并联稳压电路稳压,为整个电路提供工作电压。V2及其周围元件组成微波振荡电路,电波通过圆环天线发射出去,同时圆环天线也是反射电磁波的接收天线,R20是V2差频信号的负载电阻,它与R5共同建立该级的工作点。V3射极输出器起到阻抗变换作用,减小后级对微波振荡级增益的影响。
[0091]本电路用一块LM324完成对前级信号的放大、比较、光控、延时功能,IClD组成一个低通放大电路,滤掉50Hz干扰信号。IClD的输入端电位通过电阻R14、R13的分压提供,其阻值相等,分压值是电源电压的一半。输出端{14}脚的输出电压在二分之一电源电压上随输入端电压的变化上下变化。IC1A、R15、R17、C7组成一个悬浮式的比较器,输入端的电位由IClD的{14}脚电压所决定,R15和R17的分压加在IClA的②、③脚之间。静态时,②脚电压高于③脚电压,输出端①脚输出低电平。前级输出交变信号时,②脚通过C7等于交流接地,交流信号加到②、③脚之间,经过比较之后,①脚输出方波信号。
[0092]IC1C、D3、R10、C6组成延时电路,无线麦克电路为导通状态下,⑦脚输出高电平,D3截止,⑨脚通过RlO的作用,将⑨脚拉成高电平,IClC的同相输入端通过R12、R8的分压,R8的阻值是R12的两倍,该电压是电源电压的三分之二,因反向输入端的电压高于同相输入端的电压,⑧脚输出低电平,可控硅无触发电压而截止,无线麦克电路不工作。如果⑦脚电位突然变低,D3导通,C6迅速充电,⑨脚因⑦脚电平下拉成低电平,⑨脚电压低于⑩脚电压,⑧脚输出高电压,可控硅被触发导通,无线麦克电路工作。当⑦脚电压恢复高电位后,⑨脚的电压在C6的作用下保持低电平,C6通过RlO放电,⑨脚电压升高,当⑨脚的电压超过⑩脚的电压时,⑧脚的电平反转变成低电平,可控硅失去触发电压,无线麦克电路不工作。C6的上述放电时间,就是无线麦克电路延时断电的时间。
[0093]①脚输出的方波信号加到⑥脚上的电压值由R16,当R16压值大于IClB的⑤脚电压时,可以使输出脚⑦反转,无线麦克电路导通。电阻R7是一个微弱的隔级正反馈电阻,使得一旦⑧脚变成高电平后,⑧脚的高电压使得IClD的同相输入端电压升高,引起紛鈐猎脚电压升高,①脚电压升高,⑦脚电压变低,加大⑦脚的负脉冲宽度,使C6有足够的充电时间,从而保证了无线麦克电路导通延时关断的一致性。
[0094]无线麦克电路
[0095]MIC是驻极体话筒,它的作用就是感应空气中声波的微弱振动,并输出跟声音变化规律一样的电信号。本站选用的是灵敏度较高的话筒,一般可以输出几十毫伏以上的音频信号,这个信号足以调制下一级的高频振荡信号的频率。注意:话筒有正负极之分,一般和外壳相通的是负极。R31是MIC驻极话筒的偏置电阻,有了这个电阻,话筒才能输出音频信号,这是因为MIC话筒内部本身有一极场效应管放大电路,用来阻抗匹配和提高输出能力等作用。C15是音频信号耦合电容,将话筒感应输出的声音电信号专递到下一级。C12是三极管Q的基极滤波电容,一方面滤除高频杂音,另一方面让三极管Q的高频电位为0,对50MHz以上的高频电路来说,三极管Q是一个共基极放大电路,这是最后能形成振荡的基础。因为振荡电路的基础条件就是必须具备一定的增益,再就是具备合适相位的反馈(一般是正反馈)。R32是三极管Q的基极偏置电阻,给三极管Q提供一个较小的基极电流,三极管Q将会有一个较大的发射极电流到过R33。由于R32、R33中的电流作用会在各自电阻上产生压降并互相影响,结果会自动稳定在某一数值状态,这就是射极跟随器。R33是三极管Q的发射极电阻,这里起稳定直流工作点作用,和C13还组成了高频信号负载电阻作用,也是整个高频振荡回路的一部分。C18和L组成并联谐振回路,起到选择振荡频率的主要作用,改变C18的容量或者改变L的形状(包括圈数),可以方便的改变发射频率。C17是高频信号输出耦合电容,目的是为了让高频信号变成无线电波幅射到天空中。因此,天线最好坚直向上,长度最好等于无线电波频率波长(或者整数倍),四周应该开阔,不要有金属物阻挡。
[0096]说明:波长等于频率的倒数,频率变化,波长也会变化,再说,天线具体的长度还与电路输出阻抗、天线粗细等等有关,在业余情况下,随便接一段电线就行了。(如果为了追求最远的发射距离,大家可以自行多做这方面的尝试,本站元件包经过本站技术人员试验,效果是可以轻松达到50米以外的。)C16是反馈电容,电路起振的关键元件就是它了。分析本电路的高频状态时,集电极是输出,发射极是输入,输出信号通过C16加到输入端,产生强烈的正反馈,自然就产生振荡了。这实际上也就是书中所说的电容三点式振荡电路。C11、C14是电源滤波电容,给交流信号提供回路,减小电源的交流内阻。
[0097]语音信号接收模块
[0098]语音信号接收模块工作原理由输入回路,即选择电路,或称调谐电路把空中许多无线电广播电台发出的信号选择其中一个,送给混频电路。混频将输入信号的频率变为中频,但其幅值变化规律不改变。不管输入的高频信号的频率如何,混频后的频率是固定的,我国规定为465KHZ。中频放大器将中频调幅信号放大到检波器所要求的大小。由检波器将中频调幅信号所携带的音频信号取下来,送给前置放低频放大器。前置低频放大器将检波出来的音频信号进行电压放大。
[0099]图4中感应线圈Tl、微调电容CA等,组成谐振电路,根据CA的大小不同,谐振于不同的频率,取得这个频率的无线电信号。三极管VTl对取得的信号有放大作用,放大的输出电流从集电极输出。电感T2、微调电容(^及三极管VTl组成本机振荡电路,由于微调电容Ca、微调电容(^是联动的,本机振荡频率总是比感应线圈Tl、微调电容Ca组成的谐振电路的频率高465KHz。三极管VTl还起混频的作用:其发射极本机振荡信号会对感应线圈Tl、微调电容Ca组成的谐振电路输入的特定频率信号调制(乘法运算),在集电极电流中会有本机振荡频率与三极管VT、微调电容(;组成的谐振频率的差频、和频等成分。其中差频等于465KHzo线圈T3、线圈T4是并联谐振电路,谐振频率均是465KHz,信号通过变压器的次级线圈输出到下一级。三极管VT2、三极管VT3起465kHz信号(中频信号)电压放大作用。另外三极管VT3由于特殊的偏置,还起到了检波的作用(取得调幅信号的包络线)。电容C4-5的作用是滤除检波信号中的中频成分,获得音频信号。三极管VT4用于音频
当前第3页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1