一种利用高斯梯度的负荷开关事件检测方法和系统与流程

文档序号:23805841发布日期:2021-02-03 09:04阅读:51来源:国知局
一种利用高斯梯度的负荷开关事件检测方法和系统与流程

[0001]
本发明涉及电力领域,尤其涉及一种负荷开关事件检测方法和系统。


背景技术:

[0002]
随着智能电网的发展,家庭用电负荷的分析变得越来越重要。通过用电负荷的分析,家庭用户可以及时获得每个电器的用电信息,以及电费的精细化清单;电力部门可以获得更详尽的用户用电信息,并可以提高用电负荷预测的准确度,为电力部门提供统筹规划的依据。同时,利用每个电器的用电信息,可获知用户的用电行为,这对于家庭能耗评估和节能策略的研究具有指导意义。
[0003]
当前用电负荷分解主要分为侵入式负荷分解和非侵入式负荷分解两种方法。非侵入式负荷分解方法不需要在负荷的内部用电设备上安装监测设备,只需要根据用电负荷总信息即可获得每个用电设备的负荷信息。非侵入式负荷分解方法具有投入少、方便使用等特点,因此,该方法适用于家庭负荷用电的分解。
[0004]
非侵入式负荷分解算法中,电气设备的开关事件检测是其中最重要的环节。最初的事件检测以有功功率p的变化值作为事件检测的判断依据,方便且直观。这是因为任何一个用电设备的运行状态发生变化,其所消耗的功率值也必然发生改变,并且该改变也将会在所有电器所消耗的总功率中体现出来。这种方法除了需要设置功率变化值的合理阈值,还需要解决事件检测方法在实际应用中存在的问题:某些电器启动时刻的瞬时功率值会出现较大的尖峰(例如,马达启动电流远大于额定电流),会造成电器稳态功率变化值不准确,从而影响对开关事件的判断,这种尖峰其实就是脉冲噪声;而且不同家用电器的暂态过程或长或短(脉冲噪声的持续时间和发生频率相差较大),因此功率变化值的确定变得较为困难;由于电能质量的变化(如电压突降)有功功率会出现突变的情况,这样很可能会出现误判。(脉冲)噪声的强度很大,并且背景噪声对开关事件的正确检测有较大的影响。
[0005]
现在常用的负载开关事件往往利用功率数据的变化来确定:当功率变化值超过预置的阈值时,则认为有负载开关事件发生。这种方法虽然简单易行,但由于脉冲噪声以及非线性负载的普遍使用,造成开关事件检测精度的极大下降。
[0006]
因此,开关事件检测过程中,如何提高开关事件检测精度是非常重要的。负载开关事件检测是能量分解中最为重要的一步,既要检测到事件发生,同时还能确定事件发生的时刻。但是开关事件检测的精度受功率信号(功率序列)中噪声的影响较大,尤其是功率信号中普遍存在着脉冲噪声,进一步影响了检测精度。因此有效提高负载开关事件的检测精度是当前非常重要的一项工作。


技术实现要素:

[0007]
现在常用的负载开关事件往往利用功率数据的变化来确定:当功率变化值超过预置的阈值时,则认为有负载开关事件发生。这种方法虽然简单易行,但由于脉冲噪声以及非线性负载的普遍使用,造成开关事件检测精度的极大下降。
[0008]
本发明的目的是提供一种利用高斯梯度的负荷开关事件检测方法和系统,所提出的方法利用了不同负荷开关动作时所产生的暂态功率信号差异,通过高斯梯度性质区分不同负荷的不同开关事件以及异常功率信号造成的异常事件。所提出的方法具有较好的开关事件检测性能,计算也非常简单。
[0009]
为实现上述目的,本发明提供了如下方案:
[0010]
一种利用高斯梯度的负荷开关事件检测方法,包括:
[0011]
步骤101获取按时间顺序采集的信号序列s;
[0012]
步骤102求取线性梯度矩阵,具体为:线性梯度矩阵记为g1,所用求取公式为:
[0013][0014]
其中:
[0015]
σ表示信号序列s的均方差;
[0016]
步骤103求取高斯梯度矩阵,具体为:高斯梯度矩阵记为g2,其第i行第j列元素记为所用求取公式为:
[0017][0018]
其中:
[0019]
t为信号序列s的采样间隔,
[0020]
i=1,2,
···
,5为行序号,
[0021]
j=1,2,
···
,5为列序号;
[0022]
步骤104生成n个窗口信号矩阵,具体为:
[0023]
第k个窗口信号矩阵记为d
k
,其第i行第j列元素记为所用求取公式为:
[0024][0025]
其中:
[0026]
s
|i+j+1+5(k-1)|n
表示信号序列s的第|i+j+1+5(k-1)|
n
个元素,
[0027]
s
|i+j+5(k-1)|n
表示信号序列s的第|i+j+5(k-1)|
n
个元素,
[0028]
|i+j+5(k-1)|
n
表示以n为模对i+j+5(k-1)取余数,
[0029]
|i+j+1+5(k-1)|
n
表示以n为模对i+j+1+5(k-1)取余数;
[0030]
步骤105求取n个高斯梯度值,具体为:
[0031]
第k个高斯梯度值记为h
k
,所用求取公式为:
[0032]
h
k
=||(g1+g2)d
k
||
f
[0033]
其中:||(g1+g2)d
k
||
f
表示(g1+g2)d
k
的frobenus模;
[0034]
步骤106检测负荷开关事件,具体为:如果第k个高斯梯度值h
k
大于等于则在信号序列s的第k点处检测到负荷开关事件;否则未检测到负荷开关
事件;其中,max s表示信号序列s中所用元素的最大值;min s表示信号序列s中所用元素的最小值。
[0035]
一种利用高斯梯度的负荷开关事件检测系统,包括:
[0036]
模块201获取按时间顺序采集的信号序列s;
[0037]
模块202求取线性梯度矩阵,具体为:线性梯度矩阵记为g1,所用求取公式为:
[0038][0039]
其中:
[0040]
σ表示信号序列s的均方差;
[0041]
模块203求取高斯梯度矩阵,具体为:高斯梯度矩阵记为g2,其第i行第j列元素记为所用求取公式为:
[0042][0043]
其中:
[0044]
t为信号序列s的采样间隔,
[0045]
i=1,2,
···
,5为行序号,
[0046]
j=1,2,
···
,5为列序号;
[0047]
模块204生成n个窗口信号矩阵,具体为:
[0048]
第k个窗口信号矩阵记为d
k
,其第i行第j列元素记为所用求取公式为:
[0049][0050]
其中:
[0051]
s
|i+j+1+5(k-1)|n
表示信号序列s的第|i+j+1+5(k-1)|
n
个元素,
[0052]
s
|i+j+5(k-1)|n
表示信号序列s的第|i+j+5(k-1)|
n
个元素,
[0053]
|i+j+5(k-1)|
n
表示以n为模对i+j+5(k-1)取余数,
[0054]
|i+j+1+5(k-1)|
n
表示以n为模对i+j+1+5(k-1)取余数;
[0055]
模块205求取n个高斯梯度值,具体为:
[0056]
第k个高斯梯度值记为h
k
,所用求取公式为:
[0057]
h
k
=||(g1+g2)d
k
||
f
[0058]
其中:||(g1+g2)d
k
||
f
表示(g1+g2)d
k
的frobenus模;
[0059]
模块206检测负荷开关事件,具体为:如果第k个高斯梯度值h
k
大于等于则在信号序列s的第k点处检测到负荷开关事件;否则未检测到负荷开关事件;其中,max s表示信号序列s中所用元素的最大值;min s表示信号序列s中所用元素的最小值。
[0060]
根据本发明提供的具体实施例,本发明公开了以下技术效果:
[0061]
现在常用的负载开关事件往往利用功率数据的变化来确定:当功率变化值超过预置的阈值时,则认为有负载开关事件发生。这种方法虽然简单易行,但由于脉冲噪声以及非线性负载的普遍使用,造成开关事件检测精度的极大下降。
[0062]
本发明的目的是提供一种利用高斯梯度的负荷开关事件检测方法和系统,所提出的方法利用了不同负荷开关动作时所产生的暂态功率信号差异,通过高斯梯度性质区分不同负荷的不同开关事件以及异常功率信号造成的异常事件。所提出的方法具有较好的开关事件检测性能,计算也非常简单。
附图说明
[0063]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0064]
图1为本发明的方法流程示意图;
[0065]
图2为本发明的系统流程示意图;
[0066]
图3为本发明的具体实施案例流程示意图。
具体实施方式
[0067]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0068]
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0069]
图1一种利用高斯梯度的负荷开关事件检测方法的流程示意图
[0070]
图1为本发明一种利用高斯梯度的负荷开关事件检测方法的流程示意图。如图1所示,所述的一种利用高斯梯度的负荷开关事件检测方法具体包括以下步骤:
[0071]
步骤101获取按时间顺序采集的信号序列s;
[0072]
步骤102求取线性梯度矩阵,具体为:线性梯度矩阵记为g1,所用求取公式为:
[0073][0074]
其中:
[0075]
σ表示信号序列s的均方差;
[0076]
步骤103求取高斯梯度矩阵,具体为:高斯梯度矩阵记为g2,其第i行第j列元素记为所用求取公式为:
[0077][0078]
其中:
[0079]
t为信号序列s的采样间隔,
[0080]
i=1,2,
···
,5为行序号,
[0081]
j=1,2,
···
,5为列序号;
[0082]
步骤104生成n个窗口信号矩阵,具体为:
[0083]
第k个窗口信号矩阵记为d
k
,其第i行第j列元素记为所用求取公式为:
[0084][0085]
其中:
[0086]
s
|i+j+1+5(k-1)|n
表示信号序列s的第|i+j+1+5(k-1)|
n
个元素,
[0087]
s
|i+j+5(k-1)|n
表示信号序列s的第|i+j+5(k-1)|
n
个元素,
[0088]
|i+j+5(k-1)|
n
表示以n为模对i+j+5(k-1)取余数,
[0089]
|i+j+1+5(k-1)|
n
表示以n为模对i+j+1+5(k-1)取余数;
[0090]
步骤105求取n个高斯梯度值,具体为:
[0091]
第k个高斯梯度值记为h
k
,所用求取公式为:
[0092]
h
k
=||(g1+g2)d
k
||
f
[0093]
其中:||(g1+g2)d
k
||
f
表示(g1+g2)d
k
的frobenus模;
[0094]
步骤106检测负荷开关事件,具体为:如果第k个高斯梯度值h
k
大于等于则在信号序列s的第k点处检测到负荷开关事件;否则未检测到负荷开关事件;其中,max s表示信号序列s中所用元素的最大值;min s表示信号序列s中所用元素的最小值。
[0095]
图2一种利用高斯梯度的负荷开关事件检测系统的结构意图
[0096]
图2为本发明一种利用高斯梯度的负荷开关事件检测系统的结构示意图。如图2所示,所述一种利用高斯梯度的负荷开关事件检测系统包括以下结构:
[0097]
模块201获取按时间顺序采集的信号序列s;
[0098]
模块202求取线性梯度矩阵,具体为:线性梯度矩阵记为g1,所用求取公式为:
[0099][0100]
其中:
[0101]
σ表示信号序列s的均方差;
[0102]
模块203求取高斯梯度矩阵,具体为:高斯梯度矩阵记为g2,其第i行第j列元素记为所用求取公式为:
[0103][0104]
其中:
[0105]
t为信号序列s的采样间隔,
[0106]
i=1,2,
···
,5为行序号,
[0107]
j=1,2,
···
,5为列序号;
[0108]
模块204生成n个窗口信号矩阵,具体为:
[0109]
第k个窗口信号矩阵记为d
k
,其第i行第j列元素记为所用求取公式为:
[0110][0111]
其中:
[0112]
s
|i+j+1+5(k-1)|n
表示信号序列s的第|i+j+1+5(k-1)|
n
个元素,
[0113]
s
|i+j+5(k-1)|n
表示信号序列s的第|i+j+5(k-1)|
n
个元素,
[0114]
|i+j+5(k-1)|
n
表示以n为模对i+j+5(k-1)取余数,
[0115]
|i+j+1+5(k-1)|
n
表示以n为模对i+j+1+5(k-1)取余数;
[0116]
模块205求取n个高斯梯度值,具体为:
[0117]
第k个高斯梯度值记为h
k
,所用求取公式为:
[0118]
h
k
=||(g1+g2)d
k
||
f
[0119]
其中:||(g1+g2)d
k
||
f
表示(g1+g2)d
k
的frobenus模;
[0120]
模块206检测负荷开关事件,具体为:如果第k个高斯梯度值h
k
大于等于则在信号序列s的第k点处检测到负荷开关事件;否则未检测到负荷开关事件;其中,max s表示信号序列s中所用元素的最大值;min s表示信号序列s中所用元素的最小值。
[0121]
下面提供一个具体实施案例,进一步说明本发明的方案
[0122]
图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
[0123]
步骤301获取按时间顺序采集的信号序列s;
[0124]
步骤302求取线性梯度矩阵,具体为:线性梯度矩阵记为g1,所用求取公式为:
[0125][0126]
其中:
[0127]
σ表示信号序列s的均方差;
[0128]
步骤303求取高斯梯度矩阵,具体为:高斯梯度矩阵记为g2,其第i行第j列元素记为所用求取公式为:
[0129]
[0130]
其中:
[0131]
t为信号序列s的采样间隔,
[0132]
i=1,2,
···
,5为行序号,
[0133]
j=1,2,
···
,5为列序号;
[0134]
步骤304生成n个窗口信号矩阵,具体为:
[0135]
第k个窗口信号矩阵记为d
k
,其第i行第j列元素记为所用求取公式为:
[0136][0137]
其中:
[0138]
s
|i+j+1+5(k-1)|n
表示信号序列s的第|i+j+1+5(k-1)|
n
个元素,
[0139]
s
|i+j+5(k-1)|n
表示信号序列s的第|i+j+5(k-1)|
n
个元素,
[0140]
|i+j+5(k-1)|
n
表示以n为模对i+j+5(k-1)取余数,
[0141]
|i+j+1+5(k-1)|
n
表示以n为模对i+j+1+5(k-1)取余数;
[0142]
步骤305求取n个高斯梯度值,具体为:
[0143]
第k个高斯梯度值记为h
k
,所用求取公式为:
[0144]
h
k
=||(g1+g2)d
k
||
f
[0145]
其中:||(g1+g2)d
k
||
f
表示(g1+g2)d
k
的frobenus模;
[0146]
步骤306检测负荷开关事件,具体为:如果第k个高斯梯度值h
k
大于等于则在信号序列s的第k点处检测到负荷开关事件;否则未检测到负荷开关事件;其中,max s表示信号序列s中所用元素的最大值;min s表示信号序列s中所用元素的最小值。
[0147]
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。
[0148]
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1