光拾取器的制作方法

文档序号:6771280阅读:128来源:国知局
专利名称:光拾取器的制作方法
技术领域
本文涉及光拾取器,尤其涉及减少跟踪信号向聚焦信号泄漏的光拾取器。
背景技术
在对CD (Compact Disc,光盘)、DVD (Digital Versatile Disc,数字多用途光盘) 等光盘记录并再现信息信号的光盘装置中,尤其在以DVD为记录介质的光盘装置中,也有使用CD作为记录介质的需要。因此,上述光盘装置中的光拾取器,需要根据装载的记录介质,产生CD用的近红外激光与DVD用的红色激光这两种波长互不相同的激光中的一者,对记录介质进行信息信号的记录或再现。在专利文献1中,公开了上述的双波长型的光拾取器的一个例子。专利文献1 日本专利特开2003-317^0号公报

发明内容
最初,上述的双波长型的光拾取器如专利文献1的图3所示,按CD用和DVD用分别具有不同的激光光源和衍射光栅,并具有用于将两个激光光源产生的激光光束引导至大致相同的光路的分束器。因此,在应对光拾取器的小型化上存在局限。对此,最近为了应对小型化,如专利文献1的图1所示,使用将CD用和DVD用的激光光源贴近设置(例如0. Imm左右)的双波长型的激光光源,在⑶用和DVD用时共用一个衍射光栅,不需要上述目的的分束器的光拾取器变得普遍起来。针对在CD用和DVD用时共用的情况,对上述衍射光栅进行研究。衍射光栅具有规定的衍射周期(光栅周期),起到将上述激光光源产生的激光光束分束为主光束(0级衍射光)和两束副光束(士 1级衍射光)的作用。如后文所述,光拾取器分别具有检测上述主光束的反射光的光检测器,和检测两束副光束各自的反射光的光检测器。光盘装置对由各光检测器所得到的电信号进行运算,生成跟踪控制用的跟踪信号和聚焦控制用的聚焦信号, 来控制光拾取器相对于光盘上的记录轨道的水平方向(跟踪方向)和垂直方向(聚焦方向)上的位置。对于⑶和DVD,由于不仅使用的激光波长不同,光盘上的轨道间距也不同,因此上述衍射光栅的衍射周期的最佳值互不相同。所以,上述目的的衍射光栅一般地在厚度方向 (激光的行进方向)的不同位置上分别具有CD用的衍射光栅和DVD用的衍射光栅。该衍射光栅有时被称为双面双波长衍射光栅。然而,由于组合了两面衍射光栅,存在价格上较为高昂的问题。对此,最近开始通过使用具有一面衍射光栅的单面双波长衍射光栅来解决上述的价格问题。在使衍射光栅为一面的情况下,要根据两者的激光通过的位置使用最佳的衍射周期,但在现实中存在困难,因此在对于两者来说没有太大问题的范围内,使用不同于最佳值的衍射周期。因此,尤其是两束副光束照射到光盘上的位置会与最佳值有所偏差,存在例如上述聚焦控制用的聚焦信号中产生来自跟踪信号的泄漏,损害聚焦控制性能的问题。本发明的目的在于,鉴于上述问题,提供减少跟踪信号向聚焦信号泄漏的光拾取

为了解决上述问题,本发明提供一种对光盘记录介质照射激光来对上述记录介质进行信息信号的记录或者再现的光拾取器,包括激光发生器,将具有第一波长的第一激光和具有与第一波长不同的第二波长的第二激光有选择地产生;单面双波长衍射光栅,被该激光发生器产生的第一激光和第二激光照射,将该两种激光均用同一衍射面分束成主光束和两束副光束;准直透镜,将由该单面双波长衍射光栅分束而得的上述主光束和两束副光束从发散光束变换成平行光束;物镜,将由该准直透镜变换成平行光束后的上述主光束和两束副光束会聚到上述记录介质的数据记录面;会聚透镜,将从上述数据记录面反射的上述主光束和两束副光束会聚;和光检测器,具备第一受光器,具有被由该会聚透镜会聚的上述主光束照射并将其转换成电信号的4个受光区域;第二和第三受光器,具有被由上述会聚透镜会聚的上述两束副光束照射并将其转换成电信号的4个受光区域,该光检测器所包含的上述第二和第三受光器的上述4个受光区域的中心位置,相对于上述第一受光器的上述4个受光区域的中心位置,在相对于上述光拾取器的上述光盘的线速度方向上移位规定的移位量。通过本发明,能够提供减少跟踪信号向聚焦信号泄漏的光拾取器,具有能够提高光拾取器的基本性能的效果。


图1是表示使用了本发明的光拾取器的光盘装置的一实施例的框图。图2是本发明一实施例的光拾取器的框图。图3是本发明一实施例的聚焦信号生成部的框图。图4是表示光检测器的位置和泄漏信号振幅的关系的一个例子的图。图5是表示光检测器的位置的一个例子的图。图6是表示光检测器的位置和泄漏信号振幅的关系的另一例子的图。图7是表示本发明一实施例的光检测器的位置的一个例子的图。图8是表示本发明一实施例的光检测器的位置和泄漏信号振幅的关系的图。图9是表示本发明一实施例的光检测器的位置的另一例子的图。附图标记说明1 光盘、3 光拾取器、4 =AFE电路、20 受光器、26 系数器、31 物镜、33 激光发生器、34 衍射光栅、35 分束器、36 准直透镜、37 全反射镜、38 会聚透镜
具体实施例方式下面参照附图对本发明的实施例进行说明。图1是表示使用了本发明的光拾取器的光盘装置的一实施例的框图。作为记录介质的光盘1为⑶、DVD等。当然,可以使用⑶-R或DVD-R等仅可记录一次的可记录光盘、 CD-RW或DVD-RAM等可擦写型光盘以及CD-ROM或DVD-ROM等只读型光盘中的一者。装入的光盘1通过轴11被主轴电机12旋转驱动。其所需的驱动控制信号从系统控制电路6供
光拾取器3通过物镜31,将激光光束32照射到光盘1的记录面上,进行数据的记录或者再现。光拾取器3搭载在步进(sled)机构(图中未示出)上,沿光盘1上的半径方向移动,在规定的轨道位置上进行数据的记录或再现。其所需的控制信号由系统控制电路6生成。此外物镜31搭载在致动器(图中未示出)上,仍基于由系统控制电路6生成的控制信号,对该物镜相对于光盘1的垂直方向(聚焦方向)和半径方向(跟踪方向)的位置进行微调,以使激光光束32正确地聚焦在光盘1的规定的记录轨道上进行跟踪。光拾取器3从光盘1再现的再现信号,供给到AFE (Analog Front End,模拟前端) 电路4。AFE电路4进行虽为数字记录但在本质上仍应作为模拟信号处理的上述再现信号的处理。即,AFE电路4对再现信号进行运算处理,生成跟踪信号(TE-Tracking Error-信号)和聚焦信号(FE-Focus Error-信号),供给到系统控制电路6。系统控制电路6基于所供给的TE信号和FE信号,生成跟踪用和聚焦用的伺服信号,并供给到光拾取器3,控制其动作。此外下面将AFE电路4中生成TE信号和FE信号的部分称为运算部。此外AFE电路4在对利用光拾取器3和光盘1记录或再现数据时的振幅和相位的频率特性进行均衡后,将均衡后的数据输出到输出端子5,供给到图中未示出的再现信号处理电路。并且,AFE电路4可以与系统控制电路6集成在同一个半导体芯片上。此外,上述再现信号处理电路也可以与系统控制电路6集成在同一个半导体芯片上。下面,针对图1的光拾取器3进行说明。图2是本发明的一实施例中的光拾取器的框图。产生CD用和DVD用的激光的双波长激光发生器33包含激光二极管,根据装入光盘装置的光盘1的种类,产生⑶用的近红外激光和DVD用的红色激光中的一者。图中的箭头表示了激光大致的光路。如上所述,⑶用的激光光源和DVD用的激光光源贴近设置,实际上有0. Imm左右的位置差异。此外,光盘上的记录轨道的间距和记录位置与光盘表面的距离也可能不一致, 所以CD用的激光与DVD用的激光之间存在若干的光路差异,但在此为了避免图的复杂,仅表示一个光路。激光发生器33所产生的激光在衍射光栅34被分割为3束光束。一束是被称为0 级衍射光的主光束,剩下两束是被称为士 1级衍射光的副光束。衍射光栅34将激光分割, 以使在光盘1上,两束副光束照射于在记录轨道的半径方向的两个方向上相对于上述主光束距离记录轨道间距1/2的点上。衍射光栅34所分离的上述三束光束通过分束器35,被准直透镜36从发散光束变成平行光束。之后,平行光束被全反射镜37向着光盘1的记录面反射,在物镜31的作用下, 光路被以聚焦于光盘的记录面上的方式折射,由此照射到光盘1上。如上所述,物镜31搭载在致动器上,对该物镜控制跟踪方向和聚焦方向上的位置以使其正确地跟踪光盘1的记录轨道。进一步地,来自光盘1的反射光,经过物镜31被全反射镜37向着准直透镜36的方向反射,然后在分束器35也发生反射,到达会聚透镜38。在被会聚透镜38折射后,向着光检测器20照射,被转换成与光强度相应的电信号。被供给上述电信号的AFE电路4,基于上述信号,对光盘1中记录的信息信号的频率特性进行均衡,进一步生成上述TE信号和冊信号。另外,图2所示的光拾取器的结构并非对本发明的限定。例如在上述专利文献1 中分束器35与准直透镜36是反过来配置的。此外,在光拾取器3的厚度不构成问题的情况下,也可以取消全反射镜37,从激光发生器33朝着光盘1产生激光。如此,本发明也可以适用于与图2不同的光拾取器。下面,针对AFE电路4中的FE信号的生成方法进行说明。图3是本发明一实施例的FE信号生成部的框图。图3的左侧概念性地表示了上述三束衍射光(0级衍射光和士 1级衍射光)所照射的光盘上的位置与记录轨道的位置的关系。当然,这是进行跟踪控制和聚焦控制的状态。此外,也表示了作为光盘1使用可记录信息信号的类型的光盘,从未记录的状态途中向记录完毕状态迁移过程中的情况。如上所述,光拾取器3具有用于接收光盘1所反射的激光的光检测器20。若令记录轨道的轨间距为Tr,光检测器20接收来自相对于中心大致士Tr范围内的反射光。此外光检测器20与上述三束衍射光相应地,具有在跟踪方向上相互分离Tr/2距离的三个受光器,并且各受光器具有4个受光区域。AFE电路4对基于在这些4个受光区域中接收到的激光而得的电信号进行运算,生成FE信号。在图3中,例如接收来自上述0级衍射光的反射光的第一受光器22 (下面称为主受光器)的4个受光区域分别记为A、B、C、D,基于在这4个受光区域接收的激光的电信号同样表示为A、B、C、D0利用加法器242、243和减法器251运算所得的信号称为 CAD (Conventional Astigmatism Detection,常规像散检测)信号。FE(CAD) = (A+C)-(B+D)(式 1)此外,以隔着受光器22且在光盘1的半径方向(跟踪方向)上距离受光器 22士Tr/2的位置为中心,同样具有4个受光区域的第二受光器21和第三受光器23 (下面称两者为副受光器),接收基于上述士 1级衍射光的反射光。利用减法器241、244和加法器 252所得到的信号称为SAD (Subsidiary Astigmatism Detection,副像散检测)信号。FE (SAD) = (EF1+EF3) - (EF2+EF4) (式 2)在此,将基于第二受光器21的4个受光区域的电信号表示为E1、E2、E3、E4,将基于第三受光器23的4个受光区域的电信号表示为Fl、F2、F3、F4,并进一步地将例如El和 Fl的和信号表示为EFl。将SAD信号在系数器(coefficient unit,常数器)26中乘以规定的常数K,并在加法器27中与先前的CAD信号相加,在输出端子观得到DAD (Differential Astigmatism Detection,差分像散检测)信号。FE (DAD) = FE(CAD)+K*FE(SAD) = {(A+C)-(B+D)}+K*{(EF1+EF3)- (EF2+EF4)} (式3)将(式3)的信号作为FE信号进行聚焦伺服控制,现在普遍使用的是DAD方式。并且,预先决定系数器沈中的系数K,以使DAD信号中的跟踪信号的泄漏最小。或者也可以设置对输出端子观的DAD信号的振幅进行检测的检测器,来适当地控制系数K,以使该振幅始终为最小。如今,光检测器20并非单纯的光学部件,而多为与基于检测到的光生成的电信号的产生部形成为一体的电光学部件。这也称为OEIC(Optical Electronic IntegratedCircuit,光电子集成电路),也是集成电路的一种。因此,上述受光部21、22、23和其被分割而得的受光区域,使用集成电路工艺以极高的位置精度形成。此外,将第一受光器22、加法器242与243和减法器251称为主聚焦系统,将第二受光器21和第三受光器23以及减法器241与M4、加法器252、系数器沈称为副聚焦系统。下面,说明使图2的衍射光栅34为单面双波长衍射光栅的情况下的问题和新的改
善方法。图4是表示光检测器的位置和泄漏信号振幅的关系的一个例子的图,表示使用了针对例如DVD用的激光最优地设计衍射周期的衍射光栅的情况。图中的横轴为PDT,纵轴为 XTK。PDT指的是图3的受光器21、22、23的图面横向方向(相对于光拾取器3的光盘1 的线速度方向)上的PD平衡(PD =Photo Detector,光检测器)。例如在受光器22中,在进行聚焦控制,最佳地聚焦的情况下,PDT表示为PDT = {(D+C) - (A+B)} / (A+B+C+D)(式 4)S卩,对于各受光器,各光束在最佳地聚焦的状态下成像为大致圆形,在焦点向任一方向偏离的状态下成像为大致椭圆形,而PDT意味着在前者的状态下的值。在图3中,各受光器相对于所照射的光束的相对位置,在PDT为正值向右方向移动,在PDT为负值时向左方向移动。另一方面,XKT (Crosstalk Noise 串扰噪声)表示向FE信号泄漏的TR信号(跟踪信号)的振幅。图中的⑴为泄漏到Main信号(主信号)中的串扰噪声的振幅,即为泄漏到先前的(式1)所表示的CAD信号中的串扰噪声的振幅。同样地,(2)为泄漏到Sub信号(副信号)中的串扰噪声的振幅,即为泄漏到先前的(式2)所表示的SAD信号中的串扰噪声的振幅。此外,(3)为泄漏到先前的(式3)所表示的DAD信号中的串扰噪声的振幅。在测定如图4所示的PDT与XTK的关系时,可以在使受光器21、22、23的位置相互沿图3的横方向移动同样的距离的同时测定XTK。此时,图4中以泄漏到Main信号中的串扰噪声为最小的位置为基准位置,表示各信号的XTK值的特性。泄漏到CAD信号中的串扰噪声和泄漏到SAD中的串扰噪声在原理上相位互逆。因此,若将两者相加则振幅相互抵消。因此,图3的输出端子观的DAD信号为来自跟踪信号的泄漏较少的聚焦信号,能够进行精度较好的聚焦控制。此外,如上所述,可以预先决定系数器26的系数K,使得输出端子观的DAD信号的振幅最小。或者可以检测输出端子观的 DAD信号的振幅,设置控制部控制系数K以使得该振幅为最小。在图4中,表示了如上所述使用了针对例如DVD用的激光最优地设计衍射周期的衍射光栅的情况。或者,在使用双波长激光发生器的情况下,使用双面双波长衍射光栅,使 ⑶用或DVD用的激光均最佳地发生衍射来生成主光束和副光束的情况也是相同的。在这些情况下,大致能够依照图4的(3)中所表示的原理,减少TR信号向FE信号的泄漏。然而,在使用单面双波长衍射光栅的情况下,需要进一步的改进。图5是表示光检测器的位置的一个例子的图。图6是表示光检测器的位置和泄漏信号振幅的关系的另一例子的图,表示了使用单面双波长衍射光栅作为衍射光栅的情况的例子。图5中表示了图3的受光器21、22、23的各中心位置在图上的横方向上一致的状态。并且,先前的图4中的XTK和PDT的关系也是在图5所示的位置关系下测定的。同样地,图6为在如图5所示的各受光器的位置关系下,在使用单面双波长衍射光栅时,用与图 4相同的方法测定PDT与XTK的关系的例子。在图6中,与图4不同,(1)所示的泄漏到Main信号中的串扰噪声,与(2)所示的泄漏到Sub信号中的串扰噪声之间,特性的中心不同。因此,如图(3)所示的泄漏到DAD信号中的串扰噪声的振幅各处都比图4大。因此,将在TR信号向FE信号的泄漏较大的状态下进行聚焦控制,存在聚焦伺服性能降低的问题。造成如图6所示的特性的原因为,由于使用单面双波长衍射光栅,必然不能对CD 和DVD用的两者的激光都达到最佳的衍射效果,光盘上副光束照射的位置相对于主光束不是最佳位置。下面,说明应对上述问题的本实施例的解决方法。图7是表示本发明一实施例的光检测器的位置的一个例子的图。图8是表示本发明一实施例的光检测器的位置和泄漏信号振幅的关系的图。在先前的图6中,(2)所示的泄漏到Sub信号中的串扰噪声的特性,相对于(1)所示的泄漏到Main信号中的串扰噪声的特性,PDT向正方向移动(移位)。这意味着,士 1级的衍射光(副光束)相对于0级衍射光(主光束),以向图3或图5的右侧移位的位置为中心照射在光盘上。因此在本实施例中,通过如图7所示使第二和第三受光器的位置相对于第一受光器22向右侧移位,来消除上述的特性的偏移。使用图7所示的受光器和单面双波长衍射光栅实际测量上述PDT与XTK的关系的例子为图8。在图8中,⑵所示的泄漏到Sub信号中的串扰噪声的特性,相对于⑴所示的泄漏到Main信号中的串扰噪声的特性,中心大致一致,与图4类似,(3)所示泄漏到DAD 信号中的串扰噪声的振幅得到降低。因此,将在TR信号向FE信号的泄漏较小的状态下进行聚焦控制,具有改善聚焦伺服性能的效果。此外,在图7中,相对于第一受光器22,使第二受光器21和第三受光器23向右侧移位只是一个例子。根据单面双波长衍射光栅的设计,也可可向不同的方向移位。如图7所示的受光器的配置方法,不限于具有双波长激光发生器的光拾取器中的 DVD用的受光器,也可适刚于CD用的受光器。图9是表示本发明一实施例的光检测器的位置的另一例子的图,表示了除了上述受光器21、22、23外还贴近设置有⑶用的受光器21A、22A、23A的例子。它们的相对的位置关系,均按照在使TR信号向FE信号的泄漏最小的状态下进行聚焦控制的方式决定。另外,在图7和图9中,为了使图容易理解,表示使相对于第一受光器22 Q2A)的其它受光器21(21A)、23(23A)的位置比实际的可能值更大地移位的情况。例如DVD用的受光器通常具有100 μ m见方的大小,上述移动量实际多为1 μ m左右。如上所述,由于受光器是用半导体工艺制造的,所以包含公差在内对Iym左右的移位量进行管理并制造受光器,并无任何问题。在此所示的实施方式仅为一个例子,并非对本发明的限定。基于本发明的主旨产生的不同的实施方式,也属于本发明的范畴。
权利要求
1.一种对光盘记录介质照射激光来对所述记录介质进行信息信号的记录或者再现的光拾取器,其特征在于,包括激光发生器,将具有第一波长的第一激光和具有与第一波长不同的第二波长的第二激光有选择地产生;单面双波长衍射光栅,被该激光发生器产生的第一激光和第二激光照射,将该两种激光均用同一衍射面分束成主光束和两束副光束;准直透镜,将由该单面双波长衍射光栅分束而得的所述主光束和两束副光束从发散光束变换成平行光束;物镜,将由该准直透镜变换成平行光束后的所述主光束和两束副光束会聚到所述记录介质的数据记录面;会聚透镜,将从所述数据记录面反射的所述主光束和两束副光束会聚;和光检测器,具备第一受光器,具有被由该会聚透镜会聚的所述主光束照射并将其转换成电信号的4个受光区域;第二和第三受光器,具有被由所述会聚透镜会聚的所述两束副光束照射并将其转换成电信号的4个受光区域,该光检测器所包含的所述第二和第三受光器,相对于所述第一受光器,所述4个受光区域的中心位置在相对于所述光拾取器的所述光盘的线速度方向上移位规定的移位量。
2.如权利要求1所述的光拾取器,其特征在于所述第二和第三受光器的移位量,基于以下值决定用于使基于所述主光束和副光束生成的FE信号中从TR信号泄漏的量最小的、所述第二和第三受光器相对于所述第一受光器的PDT值。
3.如权利要求1所述的光拾取器,其特征在于在所述衍射光栅与所述物镜之间具有分束器,其使从所述衍射光栅与所述物镜中的一者照射来的激光通过并使从另一者照射来的激光反射,所述会聚透镜被由所述分束器反射的反射光照射。
全文摘要
本发明提供一种光拾取器,其目的在于,在具有单面双波长衍射光栅和双波长激光发生器的光拾取器中,减少跟踪信号向聚焦信号的串扰噪声,改善聚焦控制性能。在接收由单面双波长衍射光栅所分束出的主光束和副光束的来自光盘面的反射光的受光器中,使接收主光束的受光器和接收副光束的受光器在线速度方向上的相对位置移位。位置的移动量,基于相对于上述相对位置的、根据主光束和副光束检测出的聚焦信号中来自跟踪信号的泄漏量的特性来决定。
文档编号G11B7/09GK102290068SQ20111009198
公开日2011年12月21日 申请日期2011年4月7日 优先权日2010年6月18日
发明者中村俊辉, 大石耕太郎 申请人:日立视听媒体股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1