隧穿磁阻器件和隧穿磁阻读头的制作方法

文档序号:10727076阅读:393来源:国知局
隧穿磁阻器件和隧穿磁阻读头的制作方法
【专利摘要】本公开提供了隧穿磁阻器件和隧穿磁阻读头。隧穿磁阻(TMR)器件具有薄的MgO隧穿势垒层和自由铁磁多层。自由铁磁多层包括CoFeB第一铁磁层、具有负磁致伸缩的面心立方(fcc)NiFe补偿层、以及在CoFeB层和fcc NiFe补偿层之间的体心立方(bcc)NiFe插入层。可选的铁磁纳米层可以位于MgO势垒层和CoFeB层之间。可选的非晶分隔层可以位于CoFeB层和bcc NiFe插入层之间。bcc NiFe插入层(以及可选的非晶分隔层,如果使用的话)防止fcc NiFe层在退火期间不利地影响MgO层和CoFeB层的晶体形成。bcc NiFe插入层还增大TMR并降低自由铁磁多层的Gilbert阻尼常数。
【专利说明】
隧穿磁阻器件和隧穿磁阻读头
技术领域
[0001] 本发明总体地涉及隧穿磁阻(TMR)器件,更具体地,涉及具有氧化镁(MgO)隧穿势 皇层的TMR读头。
【背景技术】
[0002] 隧穿磁阻(TMR)器件,也被称为磁隧道结(MTJ)器件,由通过薄的绝缘隧穿势皇层 分隔的两个铁磁层构成。势皇层通常由金属氧化物制成,该金属氧化物足够薄使得在这两 个铁磁层之间发生载流子的量子力学隧穿。尽管已经提出各种金属氧化物诸如铝氧化物 (Al 2〇3)和钛氧化物(Ti02)作为隧穿势皇材料,但是最有前景的材料是晶体氧化镁(MgO)。量 子力学隧穿过程是依赖电子自旋的,这表示当跨过结(junction)施加感测电流时测量的电 阻取决于铁磁层和势皇层的自旋相关(spin-dependent)电子性质,并且是这两个铁磁层的 磁化的相对取向的函数。铁磁层中的一个(被称为参考层)的磁化被固定或者被钉扎,而另 一铁磁层(被称为自由层)的磁化是自由的以响应于外部磁场而旋转。它们的磁化的相对取 向随外部磁场而变化,因此导致电阻的变化。TMR器件可用作非易失性磁随机存取存储器 (MRAM)阵列中的存储器单元以及可用作磁记录盘驱动器中的TMR读头。
[0003] 图1示出常规TMR读头10的截面图。TMR读头10包括底部的被"固定"或"被钉扎"的 参考铁磁(FM)层18、绝缘隧穿势皇层20以及顶部"自由" FM层32 JMR读头10分别具有底部和 顶部非磁性电极或引线12、14,底部非磁性电极12形成在适合的基板上。FM层18被称作参考 层,因为当存在对于TMR器件的感兴趣的期望范围内的施加磁场(即,来自磁记录盘中的磁 性层的记录区域的磁场)的情况下,该FM层18的磁化被防止旋转。参考FM层18的磁化可以通 过由高矫顽磁性膜形成或者通过交换耦合到反铁磁(AF) "钉扎"层而被固定或者被钉扎。参 考FM层18可以是反平行(AP)被钉扎结构或者磁通闭合结构(flux-closure structure)的 一部分,其中两个铁磁层通过反平行耦合(APC)间隔层而分隔并因此被反平行耦合以形成 磁通闭合,如在US5465185中所描述的。自由FM层32的磁化是自由的从而在感兴趣的范围内 的施加磁场存在的情况下旋转。在没有施加的磁场的情况下,FM层18和3 2的磁化一般在TMR 读头10中垂直地排列。FM层18、32的磁化的相对取向确定TMR器件的电阻。
[0004] 像CoFe/MgO/CoFe器件一样,具有MgO隧穿势皇的TMR器件由于某种对称性的电子 的相干隧穿(coherent tunneling)而表现出非常大的磁阻。然而,MgO隧道结需要具有 (001)外延和理想的结晶度。MgO势皇层通常通过溅射沉积和随后的退火而形成,这形成晶 体结构。已经发现,当硼(B)用于参考铁磁层和自由铁磁层中的一个或多个中时,在退火之 后观察到较高的隧穿磁阻(A R/R或者TMR)。已知非晶的CoFeB层促进MgO在(001)方向的高 质量结晶,因此实现更高的TMR。
[0005] 在TMR读头中,自由铁磁层应当产生高的TMR和低的磁致伸缩。自由层通常是包括 靠近MgO势皇层的如CoFe或者CoFeB的第一铁磁层的多层,该第一铁磁层通常具有高的自旋 极化而且具有高的正磁致伸缩。为了对此进行补偿,自由多层还包括具有负磁致伸缩和低 Fe含量(通常小于约15原子百分比(at.%))的相对厚的NiFe合金层作为第二铁磁层。然而, 低Fe的NiFe第二层具有面心立方(fee)晶体结构,其破坏在退火之后MgO势皇与第一自由层 之间的外延关系。这导致低的TMR。为了减轻此问题,非晶的分隔层如Ta可以形成在第一层 和第二层之间。还提出了铁磁非晶分隔层如CoFeBTa,如US 8427791B2中描述的,其被转让 给与本申请相同的受让人。然而,这些非晶分隔层会导致自由层具有高的Gilbert阻尼常数 (参数α,其是公知的Landau-Lifshitz-Gilbert公式中的无量纲系数)。高阻尼导致高的热 致磁噪声(有时被称为"磁噪声(mag-noise)")。随着自由层体积(并且因此其磁能)减小,热 激发对自由层的影响变得越来越重要。由于磁噪声还与TMR信号成比例,所以如果TMR大则 磁噪声是TMR器件中的主要噪声源,并将限制可实现的信噪比(SNR)。因此,期望设计具有低 阻尼的TMR器件使得磁噪声被抑制。
[0006] 所需要的是具有高TMR的TMR器件,其具有MgO势皇层和自由层,该自由层具有低磁 致伸缩和低阻尼。

【发明内容】

[0007] 本公开提供具有氧化镁隧穿势皇层和带有插入层的自由层的隧穿磁阻(TMR)器 件。
[0008] 本发明的实施方式涉及具有薄的MgO隧穿势皇层和自由铁磁多层的TMR器件。自由 铁磁多层包括CoFeB第一铁磁层、具有负磁致伸缩的基本上面心立方(fee)的低Fe的NiFe补 偿层、以及在CoFeB第一铁磁层和fee NiFe补偿层之间的基本上体心立方(bcc)的高Fe的 NiFe插入层。可选的Co、Fe或CoFe纳米层可以位于MgO势皇层和CoFeB第一铁磁层之间。可选 的非晶分隔层如Ta、CoFeBTa或CoHf可以位于CoFeB第一铁磁层和bcc NiFe插入层之间。bcc NiFe插入层(以及可选的非晶分隔层,如果其被使用)防止fee NiFe层在退火期间不利地影 响MgO和CoFeB层的(001)晶体形成。bcc NiFe插入层还增大TMR并降低自由铁磁多层的 Gilbert阻尼常数;然而,自由层磁致伸缩会增加。
[0009] 为了更全面理解本发明的本质和优点,应当参照以下结合附图的详细描述。
【附图说明】
[0010] 图1是示出常规隧穿磁阻(TMR)读头的结构的示意性截面图。
[0011] 图2是示出现有技术的TMR读头的具体结构的示意性截面图。
[0012] 图3是示出现有技术的TMR读头中的典型的参考层/MgO/自由层结构的示意性截面 图。
[0013] 图4是示出根据本发明的实施方式的具有体心立方(bcc)NiFe合金插入层的TMR读 头中的参考层/MgO/自由层结构的示意性截面图。
[0014] 图5是比较根据本发明的实施方式的结构与没有bcc NiFe插入层但具有各种非晶 分隔层的结构的Gilbert阻尼常数的柱状图。
【具体实施方式】
[0015] 图2是高度示意的截面图,示出如用于磁记录盘驱动器的现有技术的TMR读头100 的结构。此截面图是通常被称为TMR读头100的空气轴承表面(ABS)的视图。TMR读头100包括 形成在通常由电镀NiFe合金膜制成的两个铁磁屏蔽层S1、S2之间的传感器叠层。下屏蔽S1 通常通过化学机械抛光(CMP)而平滑化,以提供用于生长传感器叠层的光滑表面。传感器叠 层包括:铁磁参考层120,具有横向地取向(远离纸面)的被钉扎的磁化121;铁磁自由层110, 具有能够响应于来自记录磁盘的横向外部磁场而在层110的平面中旋转的磁化111;以及在 铁磁参考层120和铁磁自由层110之间的电绝缘隧穿势皇层130,通常是氧化镁(MgO)。在静 止状态,即没有从记录磁盘施加的磁场,自由层110的磁化111正交于参考层120的磁化121 取向。
[0016] 参考层120可以是常规的"简单的"或单个的被钉扎层,其磁化方向121通常通过交 换耦合到反铁磁层而被钉扎或者被固定。然而,在图2的示例中,参考层120是公知的反平行 (A P)被钉扎结构或者磁通闭合结构的一部分,也被称为"层叠"被钉扎层,如美国专利 5465185中描述的。AP被钉扎结构最小化参考层120与自由层110的静磁耦合。AP被钉扎结构 包括跨过诸如Ru、Ir、Rh或Cr或者其合金的AP耦合(APC)层123而反铁磁耦合的参考铁磁 (AP2)层120和下被钉扎铁磁(API)层122。由于跨过APC层123的反平行耦合,参考(AP2)铁磁 层120和被钉扎(API)铁磁层122具有它们各自的彼此反平行取向的磁化121、127。结果,AP2 铁磁层120和API铁磁层122的净磁化如此小以至于由铁磁自由层110中的磁通闭合结构导 致的退磁场基本上被最小化,因此使得TMR读头最佳地运行变得可能。
[0017] 籽层125和反铁磁(AF)钉扎层124位于下屏蔽层S1和AP被钉扎结构之间。籽层125 促进AF钉扎层124生长具有强的晶体织构的微观结构,并因此产生强的反铁磁性。籽层125 可以是单层或者不同材料的多层。AF钉扎层124因此强交换耦合到铁磁被钉扎层122,从而 将铁磁被钉扎层122的磁化127牢固地钉扎在垂直于ABS并远离ABS的方向上。然后跨过APC 层123的反平行耦合将铁磁参考层120的磁化121牢固地钉扎在垂直于ABS并朝向ABS的方向 上并反平行于磁化127。结果,铁磁AP2层120和铁磁API层122的净磁化被牢固地钉扎,因此 保证TMR读头的最佳运行。代替被AF层钉扎,API层122可以自身是硬磁层或者使其磁化127 通过硬磁层诸如CoiQQ-xPtx或者CoiQQ-X-yPtxCry(其中X在约8和约30原子百分比之间)而被钉 扎。AP被钉扎结构也可以"被自钉扎(se 1 f-p inned)"。在"被自钉扎"的传感器中,AP 1层和 AP2层的磁化方向127、121通常设定为通过存在于所制造的传感器中的残余应力和磁致伸 缩而大致垂直于磁盘表面。
[0018] 层112(有时被称为覆盖层或者盖层)位于铁磁自由层110和上屏蔽层S2之间。层 112在加工期间保护铁磁自由层110免受化学和机械损伤,使得铁磁自由层110保持良好的 铁磁性质。
[0019] 在存在感兴趣的范围内的外部磁场(即,来自记录磁盘上的被写入数据的磁场)的 情况下,虽然铁磁层120、122的净磁化保持被牢固地钉扎,但铁磁自由层110的磁化111将响 应于磁场而旋转。因此,当感测电流Is从上屏蔽层S2经过传感器叠层垂直地流动到下屏蔽 层S1时,铁磁自由层110的磁化旋转将导致铁磁参考层120的磁化和铁磁自由层110的磁化 之间的角度的变化,这可检测为电阻的变化。由于感测电流被垂直地引导穿过两个屏蔽S1 和S2之间的叠层,所以TMR读头100是电流垂直于平面(CPP)读头。
[0020] 图2还示出可选的分别在屏蔽S1、S2与传感器叠层之间的单独的电引线 (electrical leads) 126、113。引线126、113可以由Ta、Ti、Ru、Rh或者其多层形成。引线是可 选的并可以用于调节屏蔽至屏蔽的间隔。如果不存在引线126和113,则底部屏蔽S1和顶部 屏蔽S2被用作电引线。铁磁参考层120和铁磁自由层110通常由C 〇Fe、C〇FeB或者NiFe层形 成,或者由包括这些膜的多个层形成,而铁磁被钉扎层122通常由CoFe合金形成。籽层125通 常由包括Ta/NiFeCr/NiFe、Ta/NiFe、Ta/Ru或者Ta/Cu膜的多个层形成。AFM钉扎层124通常 由 FeMn、NiMn、PtMn、IrMn、PdMn、PtPdMn或者RhMn 膜制成。盖层 112通常由 Ru、Rh、T i、Ta 或者 其多层制成。
[0021]虽然图2所示的TMR读头100是"底部被钉扎"的读头,因为AP被钉扎结构在自由层 110下面,但是自由层110可以位于AP被钉扎结构下面。在这样的布置中,AP被钉扎结构的各 层被颠倒,使AP2层120在势皇层130顶上并接触势皇层130。
[0022] MgO隧道结要求具有(001)外延和理想的结晶度。MgO势皇层通常通过溅射沉积和 随后的退火(其形成晶体结构)而形成。已经发现,在参考层和自由层中的一个或两者中使 用薄的非晶CoFeB导致较高的隧穿磁阻(△ R/R或者TMR)。已知刚沉积的(as-deposited)非 晶CoFeB层促进MgO在(001)方向的高质量结晶,因此在退火之后实现更高的TMR。因此图3示 意地示出根据现有技术的典型的参考层/MgO/自由层结构。参考层/MgO/自由层结构被示出 为位于常规屏蔽S1和S2之间,并且常规的反铁磁(AF)层和籽层在参考层下面且常规的覆盖 层在自由层上面。参考层和自由层的每个的总厚度通常在约20A和80人之间。自由铁磁层 被描绘为以下的多层:与MgO势皇层相邻的薄的(例如在约1-10A厚度之间)可选的CoFe "纳 米层"、具有约5-40Λ之间的厚度的CoFeB层、具有约卻-lOOA之间的厚度的基本上面心立 方(fcc)NiFe层、以及在CoFeB层和fee NiFe层之间的具有约5-40A之间的厚度的可选的非 晶分隔层(例如,Ta、Zr、Hf、CoHf或者CoFeBTa层)。CoFe纳米层和CoFeB层具有正磁致伸缩; 然而,fee NiFe层具有负磁致伸缩并可以因此被认为是补偿正磁致伸缩的补偿层。fee NiFe补偿层具有基本上fee晶体结构。因为fee NiFe层在退火之后会不利地影响MgO势皇与 CoFe纳米层和CoFeB层之间的外延关系,并因此降低TMR,所以非晶分隔层可以用于使fee NiFe层与CoFe纳米层和CoFeB层分隔。
[0023] 在本发明的实施方式中,基本上体心立方(bcc)的NiFe插入层位于fee NiFe补偿 层和CoFeB层(或者可选的非晶分隔层,如果使用的话)之间。bee NiFe插入层具有基本上 bee晶体结构。通常bee NiFe具有大于或等于40at. %的Fe组分。与fee NiFe补偿层的通常 小于或等于15at. %的Fe含量相比,bee NiFe层具有相对高的Fe含量(等于或者大于 40at. % ) Acc NiFe插入层降低Gilbert阻尼常数并且还改善MR比,但是磁致伸缩也增加。 [0024] 一实施方式在图4的截面图中绘出。参考层/MgO/自由层结构被示出为位于常规屏 蔽S1和S2之间,并且常规的反铁磁(AF)层和籽层在参考层下面,常规的覆盖层在自由层上 面。参考层可以由C 〇Fe、C〇FeB或者NiFe层(或者这些材料的多层)形成并可以是简单的被钉 扎参考层或者AP被钉扎结构的AP2层,这两者都在以上结合图2而描述。MgO隧穿势皇层具有 在约7-15A之间的典型厚度。可选的CoFe合金纳米层具有在约20至80at. %之间的Fe含量 以及在约之间的厚度。c〇或Fe纳米层可以被用作CoFe纳米层的替代。CoFeB合金层具 有(Co xFe(1Q()-x)) (1Q()-y)By的典型组分,其中下标表示at · %,X等于或者大于60并且小于100,y 在约10与20之间。可选的分隔层可以是非晶Ta、Zr、Hf或者CoFeBTa合金层,或者是具有在约 1-30A之间的厚度并且Hf含量在约10_30at. %之间的非晶CoHf合金层。fee NiFe层可以具 有在约10-60A之间的厚度以及在约2-15at. %之间的低的Fe含量。在本发明的实施方式 中,bee NiFe层具有在约2-20A之间的厚度并且Fe含量大于或等于40at.%,优选地在约 40-55at. %之间。
[0025]以上描述的并且在图4中示出的TMR读头通过以溅射沉积或者其他已知的薄膜沉 积技术沉积传感器叠层中的层而以常规方式制造。然后在存在施加磁场的情况下该结构被 退火以设定参考铁磁层的磁化的方向。退火通常在约250至290°C进行约4至24小时。退火还 形成具有期望的结晶度的MgO势皇层。bcc NiFe插入层(以及可选的分隔层,如果使用的话) 防止fcc NiFe层不利地影响MgO层和CoFeB层的(001)晶体形成。在沉积并退火这些膜之后, 叠层被光刻图案化(lithographically patterned)和蚀刻以限定读头的期望尺寸。
[0026] 还发现bcc NiFe层增大TMR。对于如图4所示的具有非晶分隔层和bcc NiFe插入层 的结构,发现TMR的提高在2-10 %之间。
[0027] 还发现bcc NiFe层降低了Gilbert阻尼常数。这在图5的柱状图中示出,图5比较了 如图4所示的具有各种bcc NiFe插入层的结构与没有bcc NiFe插入层而只有各种非晶分隔 层(CoFeBTa和CoHf)的结构。具有bcc NiFe插入层的结构表现出约0.012的阻尼常数,而仅 具有非晶分隔层的结构表现出从约0.015至0.025的阻尼常数。尤其值得注意的是,仅具有 CoHf分隔层的结构表现出约0.024的阻尼常数。当bcc NiFe插入层被添加到该结构时,阻尼 常数显著地减小到0.012。
[0028]虽然已经参照优选的实施方式具体示出和描述了本发明,但是本领域技术人员将 理解,可以在其中进行形式和细节上的各种改变而没有脱离本发明的精神和范围。因此,所 公开的发明将仅被认为是说明性的并且被限制在仅如权利要求书所指定的范围内。
【主权项】
1. 一种隧穿磁阻(TMR)器件,包括: 基板; 参考铁磁层,在所述基板上; 隧穿势皇层,在所述参考铁磁层上并主要由MgO构成;和 自由铁磁多层,包括在所述隧穿势皇层上的第一铁磁层、具有负磁致伸缩的第二铁磁 层、以及在所述自由多层的所述第一铁磁层和所述第二铁磁层之间的具有基本上体心立方 (b c c)晶体结构的镍铁(Ni Fe)合金铁磁插入层。2. 如权利要求1所述的器件,其中所述自由多层的所述第二层是具有基本上面心立方 (fee)晶体结构的NiFe合金层。3. 如权利要求2所述的器件,其中所述fee NiFe合金层包含小于或等于15原子百分比 的量的Fe。4. 如权利要求1所述的器件,其中所述铁磁插入层包含大于或等于40原子百分比的量 的Fe。5. 如权利要求4所述的器件,其中所述铁磁插入层包含大于或等于40原子百分比且小 于或等于55原子百分比的量的Fe。6. 如权利要求1所述的器件,其中所述自由多层的所述第一层是CoFeB合金层。7. 如权利要求1所述的器件,还包括在所述势皇层和所述第一层之间并从Co、Fe以及Co 和Fe组成的合金中选择的铁磁纳米层。8. 如权利要求1所述的器件,还包括在所述自由多层的所述第一层与所述铁磁插入层 之间的非晶分隔层。9. 如权利要求8所述的器件,其中所述非晶分隔层从Ta、Zr、Hf、CoFeBTa合金和CoHf合 金中选择。10. 如权利要求1所述的器件,其中所述参考层是反平行(AP)被钉扎结构的一部分,所 述反平行被钉扎结构包括:具有平面内磁化方向的第一反平行被钉扎(API)铁磁层、与所述 隧穿势皇层相邻并具有基本上反平行于所述第一反平行被钉扎层的所述磁化方向的平面 内磁化方向的第二反平行被钉扎(AP2)铁磁层、以及在所述第一反平行被钉扎层和所述第 二反平行被钉扎层之间并且与所述第一反平行被钉扎层和所述第二反平行被钉扎层接触 的反平行耦合(APC)层,其中所述参考层是所述第二反平行被钉扎层。11. 如权利要求10所述的器件,还包括交换耦合到所述第一反平行被钉扎层的反铁磁 层,该反铁磁层用于钉扎所述第一反平行被钉扎层的磁化方向。12. -种隧穿磁阻(TMR)读头,包括: 导磁材料的第一屏蔽层; 参考铁磁层,在所述第一屏蔽层上并具有基本上被防止在存在外部磁场的情况下旋转 的平面内磁化方向; 主要由MgO构成的电绝缘隧穿势皇层,在所述参考层上并接触所述参考层; 自由铁磁多层,在所述隧穿势皇层上并具有在没有外部磁场的情况下基本上正交于所 述参考层的磁化方向取向的平面内磁化方向,所述自由铁磁多层包括:在所述隧穿势皇层 上的第一铁磁层、具有等于或小于15原子百分比的Fe含量的镍铁(NiFe)合金铁磁补偿层、 以及在所述第一铁磁层和所述铁磁补偿层之间的具有等于或大于40原子百分比的Fe含量 的NiFe合金铁磁插入层; 覆盖层,在所述自由铁磁多层上;以及 在所述覆盖层上的导磁材料的第二屏蔽层。13. 如权利要求12所述的读头,其中所述NiFe合金补偿层具有基本上面心立方(fee)晶 体结构,并且所述NiFe合金插入层具有基本上体心立方(bee)晶体结构。14. 如权利要求12所述的读头,其中所述自由多层的所述第一层是CoFeB合金层。15. 如权利要求12所述的读头,还包括在所述势皇层和所述第一层之间并从Co、Fe以及 Co和Fe组成的合金中选择的铁磁纳米层。16. 如权利要求12所述的读头,还包括在所述自由多层的所述第一层与所述NiFe合金 插入层之间的由Co和Hf构成的分隔层。17. 如权利要求12所述的读头,还包括: 反平行(AP)被钉扎结构,在所述第一屏蔽层和所述势皇层之间并包括:第一反平行被 钉扎(API)铁磁层,在所述第一屏蔽层上并具有平面内磁化方向;第二反平行被钉扎(AP2) 铁磁层,具有基本上反平行于所述第一反平行被钉扎层的磁化方向的平面内磁化方向;以 及反平行耦合(APC)层,在所述第一反平行被钉扎层和所述第二反平行被钉扎层之间并且 与所述第一反平行被钉扎层和所述第二反平行被钉扎层接触,其中所述参考层是所述第二 反平行被钉扎层;以及 反铁磁层,交换耦合到所述第一反平行被钉扎层用于钉扎所述第一反平行被钉扎层的 磁化方向。18. -种隧穿磁阻(TMR)读头,包括: 导磁材料的第一屏蔽层; 参考铁磁层,在所述第一屏蔽层上并具有基本上被防止在存在外部磁场的情况下旋转 的平面内磁化方向; 主要由MgO构成的电绝缘隧穿势皇层,在所述参考层上并接触所述参考层; 自由铁磁多层,在所述隧穿势皇层上并具有在没有外部磁场的情况下基本上正交于所 述参考层的磁化方向取向的平面内磁化方向,所述自由铁磁多层包括: 在所述MgO势皇层上的CoFe合金纳米层,具有等于或大于20原子百分比并且等于或小 于80原子百分比的Fe含量; CoFeB合金铁磁层,在所述CoFe合金纳米层上; 在所述CoFeB合金层上的非晶分隔层,从Ta、Zr、Hf、CoFeBTa合金和CoHf合金中选择; NiFe合金铁磁补偿层,具有等于或小于15原子百分比的Fe含量;以及 NiFe合金铁磁插入层,在所述分隔层和所述NiFe合金补偿层之间,具有等于或大于40 原子百分比并且小于或等于55原子百分比的Fe含量; 覆盖层,在所述自由铁磁多层上;以及 在所述覆盖层上的导磁材料的第二屏蔽层。19. 如权利要求18所述的读头,其中所述NiFe合金补偿层具有基本上面心立方(fee)晶 体结构,并且所述NiFe合金插入层具有基本上体心立方(bcc)晶体结构。20. 如权利要求18所述的读头,还包括: 反平行(AP)被钉扎结构,在所述第一屏蔽层和所述势皇层之间并包括:第一反平行被 钉扎(API)铁磁层,在所述第一屏蔽层上并具有平面内磁化方向;第二反平行被钉扎(AP2) 铁磁层,具有基本上反平行于所述第一反平行被钉扎层的磁化方向的平面内磁化方向;以 及反平行耦合(APC)层,在所述第一反平行被钉扎层和所述第二反平行被钉扎层之间并且 与所述第一反平行被钉扎层和所述第二反平行被钉扎层接触,其中所述参考层是所述第二 反平行被钉扎层;以及 反铁磁层,交换耦合到所述第一反平行被钉扎层用于钉扎所述第一反平行被钉扎层的 磁化方向。
【文档编号】G11B5/39GK106098083SQ201610283732
【公开日】2016年11月9日
【申请日】2016年4月29日
【发明人】Z.高, S.吴
【申请人】Hgst荷兰公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1