铜扩散阻挡层的形成的制作方法

文档序号:6803965阅读:555来源:国知局
专利名称:铜扩散阻挡层的形成的制作方法
背景技术
本发明一般涉及用于制造半导体集成电路的方法。
在所谓的镶嵌(damascene)方法中,可以在层间电介质材料内的沟槽中形成铜层。在某些情形中,铜材料最终形成用于传导信号的金属线路。但是,铜材料易于扩散,可能对附近的部件产生不利的影响。
因此,希望提供一种扩散阻挡层来阻止铜原子的扩散。目前,使用的是钽基或钛基扩散阻挡层。但是,钽和钛形成了天然氧化物,它妨碍以可接受的附着性和晶片内的均匀性在钽或钛表面上直接电镀铜。
因此,有必要在原位(in situ)(在用于沉积钽基或钛基扩散阻挡层的同一个腔室中)形成铜籽晶沉积。但是,要求提供物理气相沉积的铜籽晶层是麻烦的。而且,在一些情形中,上覆的(overlying)阻挡层材料和下面的(underlying)电介质之间的附着性是不可接受的。
因此,需要更好的办法来在铜层下提供扩散阻挡层。


图1是根据本发明一个实施方案的部分晶片的放大横截面视图;图2是根据本发明一个实施方案进一步处理之后的晶片的放大横截面视图;图3是根据本发明一个实施方案进一步处理之后的晶片的放大横截面视图;图4是根据本发明一个实施方案进一步处理之后的晶片的放大横截面视图;图5是根据本发明一个实施方案进一步处理之后的晶片的放大横截面视图;图6是根据本发明一个实施方案进一步处理之后的晶片的放大横截面视图;图7是根据本发明另一个实施方案的晶片的放大横截面视图;图8是根据本发明一个实施方案进一步处理之后的图7所示晶片的放大横截面视图;图9是根据本发明一个实施方案进一步处理之后的图8的晶片的放大横截面视图;图10是根据本发明一个实施方案的图6所示的晶片在进一步处理之后根据本发明另一个实施方案的放大横截面视图;图11是根据本发明一个实施方案进一步处理之后的图10所示晶片的放大横截面视图。
具体实施方法请参考图1,半导体衬底10可以由电介质材料12覆盖,所述电介质材料比如为二氧化硅、氮化物或其他电介质材料。形成电介质分隔14,以形成界定铜线路的相对区域。
传统的光刻和蚀刻方法可以用来在电介质层12中形成沟槽或通路(via)16,如图2所示。在一个实施方案中,这些特征可以根据镶嵌方法来确定。尽管图示了使用沟槽优先方法的实施方案,但是其他方法可以涉及通路优先方法或其他技术。
然后,在一个实施方案中,如图3所示,可以沉积附着增进层18,比如钛、氮化钛、氧化钌、钽、或氮化钽,且举几个实施例。层18在电介质材料12和上覆层之间提供附着作用。在另一个实施方案中,在通路16的底部可以没有附着增进层18。
如图4所示,在原位脱气和/或预清洗之后,可以沉积下面的非氧化贵金属扩散阻挡层20。贵金属扩散阻挡层20阻挡铜原子的扩散。用于该目的适当贵金属包括铂、金、钯、锇、钌、铑、钼、铱、RuN、RuO和MoN,且举几个实施例。
沉积该贵金属可以使用物理气相沉积、化学气相沉积、原子层沉积、任何上述方法的混合或任何其他可以使用的技术。当使用化学气相沉积或原子层沉积时,在某些实施方案中,可以通过改变输入反应物气体来生长薄的氮化物或氧化物层以增进对周围电介质材料的附着性。然后纯本体(bulk)阻挡材料可以被生长到精确厚度,以增进能与化学机械平面化(CMP)相容的阻挡层。与物理气相沉积相比,化学气相沉积和/或原子层沉积方法还可以导致更大的阶梯覆盖范围(step coverage)、对称性和晶片内的均匀性。
如图5所示,完成对沟槽和通路的填充,整个结构采用铜22填充。在一些实施方案中,可以使用双镶嵌镀覆方法。这可以使用电镀或其他填充技术来进行。
铜22可以通过使用化学机械平面化或任何其他平面化技术从晶片范围内去除,以得到如图6所示的平坦表面。于是,在电介质分隔14的两侧可以形成一对铜金属线路22a和22b。对于任意数目的层,这些步骤可以重复。
在本发明的一些实施方案中,通过使用贵金属减少了扩散阻挡层的氧化。这不需要提供原位籽晶层就可以完成。在一些实施方案中,不需要铜籽晶,贵金属扩散阻挡层的导电性就足以使得在阻挡层上能够直接进行镀覆。在一些应用中,使用铜镀覆工具时,非氧化的贵金属扩散阻挡层不使用中间附着层就可以增进镀覆的铜和下面的本体阻挡层材料之间的附着性,而且可以降低从阻挡层去除天然金属氧化物层的需要。贵金属扩散阻挡层的厚度可以足够薄,从而能够使用化学机械平面化或低压化学机械平面化从晶片范围内去除阻挡层材料。
通过使用单一阻挡层材料方法,在一些实施方案中,工具产率可得到增加,集成(integration)方面的顾虑可以减少。此外,在一些实施方案中,可降低在铜镀覆之前首先蚀刻阻挡层材料以改善附着性的需要。而且,在一些实施方案中,可降低化学活化阻挡层表面的需要,从而节省了工艺步骤,降低了工艺成本,并减轻了对回收和/或环境方面的考虑。
使用物理气相沉积、化学气相沉积、原子层沉积来沉积贵金属是已知的。例如,Y.Matsui等人在Electro.And Solid-State Letters(电学和固态通讯),5,C18(2002)公开了使用Ru(EtCp)2来沉积钌。K.C.Smith等人在Thin Solid Films(固体薄膜),v376,p.73(Nov.2000)公开了使用[RuC5H5(CO)2]2,3来沉积钌。在http//thinfilm.snu.ac.kr/research/electrode.htm中公开了使用四甲基庚二酮酸钌(Ru-tetramethylhentane dionate)和Ru(CO)6来沉积钌。A.Etspuler和H.Suhr在Appl.Phys.(应用物理)A,vA48,p.373(1989)公开了使用二羰基(2,4-戊二酮酸)钌(I)[dicarbonyl(2,4-pentanedionato)rhodium(I)]来沉积铑。
KA.Gesheva和V.Abrosimova在Bulg.J.of Phys.,v19,p.78(1992)公开了使用Mo(Co)6来沉积钼。D.W.Woodruff和R.A.Sanchez Martinez在Proc.of the 1986 Workshopof the Mater.Res.Soc.(材料研究学会1986年研讨会论文集),p.207(1987)公开了使用MoF6来沉积钼。Y.Senzaki等人在Proc.ofthe 14thInter.Conf.and EUROCVD-11,p.933(1997)公开了使用Os(六氟-2-丁炔)(CO)4来沉积锇。V.Bhaskaran在Chem.Vap.Dep.,v3,p.85(1997)公开了使用1,1,1,5,5,5-六氟-2,4-戊二酮酸钯(II)来沉积钯,以及E.Feurer和H.Suhr在Tin Solid Films,v157,p.81(1988)公开了使用烯丙基环戊二烯基钯(allylcyclopentadienylpalladium)络合物来沉积钯。
M.J.Rand在J.Electro.Soc.,v122,p.811(1975),以及J.M.Morabito和M.J.Rand在Thin Solid Films(固体薄膜),v22,p.293(1974)公开了使用Pt(PF3)4来沉积铂;在Journalof the Korean Physical Society(韩国物理学会杂志),Vol.33,November 1998,pp.S148-S151公开了使用((MeCp)PtMe3),以及Z.Xue,H.Thridandam,H.D.Kaesz和R.F.Hicks在Chem.Mater.1992,4,162公开了使用((MeCp)PtMe3)来沉积铂。
H.Uchida等人在Gas Phase and Surf.Chem.of Electro.Mater.Proc.Symp.(电化学材料的气相和表面化学研讨会论文集),p.293(1994),以及H.Sugawara等人在Nucl.Instrum.andMethod in Physics Res.(物理研究中的核仪器和方法),Section A,v228,p.549(1985)公开了使用二甲基(1,1,1,5,5,5-六氟氨基戊烯-2-酮酸)金(III)[dimethyl(1,1,1,5,5,5-hexafluoroaminopenten-2-onato)Au(III)]来沉积金。已经公开了使用(环辛二烯)铱(六氟-乙酰丙酮酸[(Cyclooctadiene)Iridium(hexafluoro-acetylacetonate)]来沉积铱。可以使用两步镀覆方法将贵金属直接镀覆在氮化钽层上,该两步方法涉及基本的电镀浴铜籽晶镀覆以及之后的酸性电镀浴铜本体镀覆。
参考图7,根据本发明另一个实施方案,如图1所示的结构可以使用物理气相沉积、化学气相沉积、原子层沉积或其他方法由可氧化的铜扩散阻挡层30覆盖。适当的可氧化的阻挡层材料包括Ta(N)、钨、TiN、TiNSi、钴和镍。
在使用化学气相沉积或原子层沉积方法时,在某些实施方案中,可以通过改变输入反应物气体来生长薄的氮化物或氧化物层以增进对周围电介质材料的附着性。然后,可以生长本体阻挡层组成,并且如果需要,可以通过改变单个前体的流速、脉冲次数(对于原子层沉积)以及相对承载气体的输入分压来在阻挡层整个厚度上改变其组成。在一些情形中,与物理气相沉积相比,化学气相沉积和/或原子层沉积方法还可以导致更大的阶梯覆盖范围、对称性和晶片内的均匀性。
接下来,参考图8,作为两个实施例,可以使用化学气相沉积或原子层沉积来沉积薄贵金属盖覆(cap)32以提高阶梯覆盖范围,并且在薄厚度处提供连续的盖覆(capping)薄膜以便随后能够在晶片范围内进行阻挡层/盖覆的化学机械平面化。
随后,可以沉积铜层22并将其平面化以获得如图9所示的结果。铜金属线路22a和22b形成在电介质分隔14的两侧。对任意数目的层,上述步骤可以重复。
在一些实施方案中,薄贵金属盖覆薄膜可以在不破坏真空的情况下沉积到铜扩散阻挡层上。薄金属盖覆薄膜在暴露于环境时不会形成自然氧化物。薄金属盖覆薄膜厚度可以足够薄,从而使得铜的化学机械平面化能够进行,以从晶片范围中完全去除阻挡层。夹在中间的铜扩散阻挡层堆叠可以具有足够的导电性以使得在阻挡层上直接镀覆能够进行,而无需铜籽晶。非氧化的贵金属盖覆可以增进镀覆的铜和下面的本体阻挡层材料之间的附着性,并可以在铜镀覆工具中减少对从阻挡层去除天然金属氧化物层的需求。
参考图10和图11,比如铜线路22a和22b的铜线路还可以由贵金属保护。在一个实施方案中,钌无电镀(electroless)浴组合物可以被用来使用贵金属盖覆铜线路。
钌无电镀浴组合物可以含有钌水溶性化合物,比如氯化钌、亚硝酰钌水合物等;络合剂,比如乙二胺四乙酸,1,2-乙二胺,三乙醇胺,酒石酸,等;还原钌的还原剂,比如硼水合物,二甲胺硼烷络合物,水合肼,等;pH调节剂,比如氢氧化钾或氢氧化钠、氢氧化四甲基铵等。
如图10所示,贵金属盖覆层34a可以形成在镶嵌铜线路22a和22b上。铜表面可以通过贵金属接触置换来预处理以活化所述的铜,和/或通过在对铜表面起催化作用并且催化还原贵金属的还原剂溶液中的预处理来预处理以活化所述的铜。适当的还原剂溶液的实施例包括用于钌、铑、铂、钯、金和银的二甲胺硼烷(DMAB)或硼水合物。在预处理之后可以在镶嵌铜线路22之上选择性地进行贵金属无电镀。
参考图11,随后的线路,比如线路22c和22d可以在线路22a和22b上,具体地,是在层34a上形成。随后,可以通过同样的技术在铜线路22c和22d上形成盖覆层34b。在一些实施方案中,层34b也可以用作无电镀(EL)分路(shunt)。
根据本发明的一个实施方案,钉镀溶液可以包括1-10克/升的钌(III),20-100克/升的乙二胺四乙酸,100-200克/升的氢氧化钾、1-10克/升的DMAB,温度为15-60℃,pH值为约10到约13。
开始,铜线路22a和22b的铜表面可以通过贵金属接触置换沉积来预处理以活化所述的铜线路,和/或通过在对铜表面起催化作用并且催化还原贵金属的还原剂溶液中的预处理来预处理以活化所述的铜线路。随后,可以在镶嵌铜线路之上选择性地进行贵金属无电镀。除钉、铑、铂、钯、金或银之外,其他实施例的贵金属也可以被沉积。形成下一个电介质层12,并且该电介质层可以使用化学机械抛光来平面化。可以形成光致抗蚀剂层,如以前那样形成通路或沟槽图案。
在使用HF或胺基化学物质对层间电介质12蚀刻之后,可以进行湿或干清理,且举两个实施例。对每个层间电介质可以重复这些步骤。可选择地是,在EL分路层沉积之后,可以进行退火以稳定EL分路的微结构,并便于从所述层去除H2。
尽管根据数量有限的实施例对本发明进行了说明,但是本领域的普通技术人员将认识到对它们的许多修改和变化。权利要求书覆盖了落入本发明真实的精神和范围之内的那些所有的修改和变化。
权利要求
1.一种方法,包括形成铜金属线路;以及形成用于所述线路的包括贵金属的扩散阻挡层。
2.根据权利要求1的方法,包括形成电介质,用附着增进层覆盖所述电介质,并且在所述附着增进层上形成贵金属层。
3.根据权利要求1的方法,包括形成可氧化的扩散阻挡层;使用贵金属覆盖所述扩散阻挡层。
4.根据权利要求1的方法,包括使用化学气相沉积来沉积所述贵金属。
5.根据权利要求1的方法,包括使用原子层沉积来沉积所述贵金属。
6.根据权利要求1的方法,包括在所述铜金属线路上涂覆贵金属。
7.根据权利要求1的方法,包括在所述贵金属扩散阻挡层上形成所述铜金属线路。
8.根据权利要求1的方法,包括使用镶嵌工艺形成所述金属线路。
9.根据权利要求1的方法,包括使用钌镀溶液来在铜线路上形成贵金属盖覆。
10.根据权利要求9的方法,包括形成pH值为约10到约13的溶液。
11.一种半导体结构,包括铜金属线路;以及包括与所述铜金属线路相关联的贵金属扩散阻挡层。
12.根据权利要求11的结构,其中所述扩散阻挡层包括由贵金属层覆盖的附着增进层。
13.根据权利要求11的结构,其中所述扩散阻挡层包括具有贵金属盖覆的可氧化扩散阻挡层。
14.根据权利要求13的结构,其中所述可氧化扩散阻挡层包括选自由钽、钨、钛、钴和镍组成的组的材料。
15.根据权利要求11的结构,其中所述贵金属选自由铂、金、钯、锇、钌、铑、钼和铱组成的组。
16.根据权利要求11的结构,包括在所述铜线路上形成的贵金属盖覆。
17.根据权利要求16的结构,其中所述盖覆包括钌。
18.根据权利要求11的结构,其中所述扩散阻挡层在所述金属线路之下。
19.根据权利要求11的结构,其中所述扩散阻挡层在所述金属线路之上。
20.根据权利要求19的结构,其中在所述铜线路上形成第二扩散阻挡层,在所述第二扩散阻挡层上形成第二铜线路。
21.一种方法,包括在铜线路上形成贵金属层。
22.根据权利要求21的方法,包括使用钌无电镀浴形成所述贵金属层。
23.根据权利要求22的方法,包括使用pH值为约10到约13的浴。
24.根据权利要求22的方法,包括形成包含至少一种钌水溶性化合物的浴组合物。
25.根据权利要求21的方法,包括进行预处理来活化铜线路中的铜。
26.一种半导体结构,包括铜金属线路;以及在所述线路上形成的盖覆层。
27.根据权利要求26的结构,其中所述盖覆层包括钌。
28.根据权利要求26的结构,包括形成在所述盖覆层和所述铜线路之上的第二金属线路。
29.根据权利要求26的结构,其中所述铜线路形成在含贵金属的层上。
30.根据权利要求29的结构,其中所述含贵金属层形成在附着增进层上。
31.根据权利要求29的结构,其中所述含贵金属层形成在可氧化扩散阻挡层上。
全文摘要
贵金属可以被用作非氧化扩散阻挡层(20,32)以阻止铜线路(22a,22b)的扩散。扩散阻挡层可以由形成在附着增进层(18)上的贵金属或通过在可氧化扩散阻挡层上的贵金属盖覆(30)形成。铜线路也可以用贵金属覆盖。
文档编号H01L23/52GK1708845SQ200380102322
公开日2005年12月14日 申请日期2003年10月23日 优先权日2002年10月31日
发明者史蒂文·约翰斯顿, 瓦莱利·迪宾, 迈克尔·麦克斯威尼, 彼得·穆恩 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1