用于基于雷达的水平仪的底部反射器的制作方法

文档序号:6843184阅读:279来源:国知局
专利名称:用于基于雷达的水平仪的底部反射器的制作方法
技术领域
本发明一般涉及水平测量,尤其涉及用于基于雷达的水平仪的底部反射器。
背景技术
若干年来基于雷达的方法被广泛地用于各种容器中的水平测量。在这种水平测量中,通过朝向液体的表面发送微波,接收由液体的表面反射的微波,由发射的和反射的微波传播的时间计算容器中液体的水平,测量从容器的顶部到在容器中存储的液体的表面的距离。
基于雷达的水平测量的固有的限制是,许多液体至少在某种程度上对于使用的微波是透明的,当测量低的液体水平时,这可能引起从容器的底部反射的微波干扰从液体的表面反射的微波,即距离分辨率可能不足以区别从容器的底部反射的微波和从液体的表面反射的微波。因而,在低的液体水平时,从容器底部反射的微波可能干扰测量。根据雷达水平仪的类型,在十分之几米以下便可能产生这个问题。在具有平底的含有至少是轻微透明的液体例如石油产品的容器中,这是一个普遍的问题。在一些容器中,底部可能是倾斜的。在这种容器中,一般没有干扰雷达回波的问题,但是在另一方面,当容器是空的时,因为雷达束偏离水平仪的接收器而收不到从容器的底部反射的微波。如果容器是空的,便需要具有来自底部的相当强的雷达回波,以便建立这种条件。在其它情况下,在容器的底部可能具有未知的泥浆层,甚至使平的底部产生含糊的雷达回波或者根本没有雷达回波。
在空的容器中收不到底部雷达回波的问题可以通过在容器底部焊接一个简单的反射结构来解决。不过,只要容器中的液体对于微波至少部分地透明,在液体水平略高于反射结构时,所述反射结构将引起干扰。

发明内容
因而本发明的主要目的在于提供一种底部反射器,用于旨在用于测量容器中的液体水平的基于雷达的水平仪,当在低的液体水平下使用该水平仪进行水平测量时,所述底部反射器减少来自容器的底部反射的微波的干扰,而当容器是空的时,仍然提供微波的满意的反射。
在这个方面中,本发明的一个特别的目的在于提供一种这样的底部反射器,不管是否通过管子测量水平,这种底部反射器都适用。
本发明的另一个目的在于提供一种这样的底部反射器,不管基于雷达的水平仪是频率调制的连续波(FMCW)雷达设备、脉冲雷达设备或者任何其它类型的测距雷达,这种底部反射器都适用。
本发明还有一个目的在于提供一种这样的底部反射器,其简单、可靠、高效、精确、精密、容易制造和安装并且成本低。
其中这些目的是通过所附的权利要求中提出的底部反射器实现的。
本发明人已经发现,通过提供一种底部反射器,其可以安装在容器中的预定的高度,最好靠近容器的底部,用于在容器中没有或者只有非常低的水平的液体时反射微波信号,并且包括一种反射结构,其当液体的水平在所述反射结构以上时,对于微波信号具有第一反射系数,而当液体水平在所述反射结构以下时,对于微波信号具有第二反射系数,其中所述第一反射系数大大低于所述第二反射系数,则可以实现上述目的。
优选地,所述液体是油产品,例如原油,液体的石油气(LGP),液体的天然气(LNG),其它液体碳氢化合物,或者一般而言对于微波至少部分地透明的液体。这种产品一般具有在1.6-3的范围内的介电常数,而液面以上的气体一般具有1-1.03范围内的介电常数,视其含量和压力而定。
优选地,当液体的水平在反射结构以上时,从反射结构反射的微波信号比由液体表面反射的微波信号较弱,最好是弱得多。当液体水平在反射结构以下时,由反射结构反射的微波信号最好是可以和由液面反射的微波信号相比或者略强。
根据液体的介电常数和其上方的大气的介电常数的差值,可以使用各种反射结构来获得所需的功能。这些反射结构在本说明中被详细说明了,并且可被分成由一些优选实施例构成的不同的类切断栅格,谐振结构-例如偶极子、介电反射器、极化转向结构,可以在一个小的距离内弯曲的用于引导发射的和反射的微波信号的微波引导结构,以及尤其当使用微波的自由空间传播时可以应用的结构。
关于极化转向结构类,应当理解,在水平测量中使用的微波信号具有特定的极化状态,并且第一和第二反射系数是对于所述特定的极化状态给出的。因而,在液体中反射时转动线性极化的微波信号的极化的效果等效于在微波信号的特定的极化状态下减少对于所述微波信号的反射系数。
本发明的主要优点在于,可以在没有来自容器底部反射的微波的任何干扰的情况下进行水平测量。当容器是空的或者接近空的时,即当底部反射器的反射结构被升高到被测量的液体的液面以上时,获得来自底部反射器的明显的反射,这表示容器是空的或者具有低的液体水平。
基于雷达的水平仪用于测量容器中的水平,对于本发明,所述容器不仅包括大的容器,也包括处理设备,例如反应器、离心分离机、混和器、料斗、分类机或热处理炉以及类似的装置,它们用于食品工业、药品工业、生化、基因化学和石化工业中。
由下面给出的本发明的优选实施例的详细说明和附图1-7可以清楚地看出本发明的其它特征和优点,这些都是以说明的方式给出的,因而对于本发明不是限制性的。


图1以侧视图示意地表示按照本发明的一般原理的包括底部反射器的基于雷达的水平仪;图2a-e以顶视图(2a-b)和横截面侧视图(2c-e)示意地表示按照本发明的实施例的第一优选的特定类的底部反射器;图2f是作为频率的函数的由按照本发明的实施例的第一优选的特定类的底部反射器反射和发射的微波信号的幅值的示意图;图3a-e以侧视图(3a)、透视图(3b)和顶视图(3c-e)示意地表示按照本发明的实施例的第二优选的特定类的底部反射器;图3f是作为频率的函数的由按照本发明的实施例的第二优选的特定类的底部反射器反射和发射的微波信号的幅值的示意图;图4a-b以透视图(4a)和侧视图(4b)示意地表示按照本发明的实施例的第三优选的特定类的底部反射器;图4c是作为频率的函数的由按照本发明的实施例的第三优选的特定类的底部反射器反射和发射的微波信号的幅值的示意图;图5a-c以顶视图(5a,5c)和横截面侧视图(5b)示意地表示按照本发明的实施例的第四优选的特定类的底部反射器;图6以横截面侧视图示意地表示按照本发明的实施例的第五优选的特定类的底部反射器;以及图7以透视图示意地表示按照本发明的实施例的第六优选的特定类的底部反射器。
具体实施例方式
参见图1说明本发明的优选实施例,该图以侧视图示意地表示用于基于雷达的水平测量的设备。所述设备可以是频率调制的连续波(FMCW)雷达设备、脉冲雷达设备或任何其它类型的测距雷达。
许多频率可用于雷达水平测量,但是一直广泛地使用5.8,10和25GHz附近的频带。在经常具有泡沫和污物的容器中,所述频率中的最低的频率是最通用的,这是因为在这个频率上的微波信号对这种劣化不敏感。
基于雷达的水平仪,在图1中用11表示,被安装在充有液体的箱体或容器12的顶部开口的上方,用于对所述液体的水平进行测量。优选地,所述液体是油产品,例如原油,液化石油气(LPG),或者液体天然气(LNG)。这些产品一般具有在1.6-3范围内的介电常数,而容器12中液面以上的大气一般具有1-1.03范围内的介电常数,依气体的含量和压力而定。
基于雷达的水平仪朝向容器12内的液体的表面发送微波信号,并接收由容器12中的液体的表面反射的微波信号。此外,基于雷达的水平仪包括信号处理装置(未示出),或者和信号处理装置(未示出)相连,用于由发射的和反射的微波信号的传播时间计算容器内的液体的水平。一般地说,提供基本上垂直的管子13用于引导发射的和反射的微波信号。管子13借助于支撑件14和容器相连,并被打孔,以便在其内部和外部获得相同的液体水平,而不管可能的密度分层。不过,这种水平仪可以用自由空间传播方式操作,此时可以取消管子13。
在容器12的底部附近提供底部反射器15,用于当容器中没有液体时反射微波信号。如果使用管子作为波导,例如图1中的管子13,则底部反射器15一般被安装在管子的下端部。或者,底部反射器被安装在容器的底部。
按照本发明,底部反射器15包括一种反射结构(图1中未清楚地示出),当液面处于反射结构的上方时,其对于微波信号具有第一反射系数,而当液面处于反射结构的下方时,其对于微波信号具有第二反射系数,其中第一反射系数远低于第二反射系数。
这样,便可以保证正确的操作而不受从底部反射的微波的干扰。当测量容器12中的低的液体水平时,这是尤其重要的。当液体水平下降到底部反射器15的反射结构以下时,便获得相当强的反射,借以表示低的水平。
应当注意,第一和第二反射系数被有利地称为偏振状态下(in-polarization)的反射系数。偏振状态下的反射系数指的是在底部反射器的表面反射的特定的偏振状态下的微波信号(即其幅值)和入射的微波信号(即其幅值)的比,其中的特定的偏振状态由在液体的表面反射的微波信号的偏振给出。因而,给定入射的微波信号的线性偏振,所述特定的偏振便是那个线性偏振状态,这是因为线性偏振的微波信号当被流体的表面反射时不改变其偏振状态。给定左手圆形偏振的入射微波信号,特定的偏振状态是右手圆形偏振,因为当微波信号由液体的表面反射时电场的旋转被反向。
有利的是,当液体水平在反射结构以上时,由反射结构反射的微波信号比由液体表面反射的微波信号较弱,最好是弱得多。当液体水平在反射结构以下时,由反射结构反射的微波信号最好是可以和由液面反射的微波信号相比的,或者略微强一些。应当避免太强的反射。
优选地,第一反射系数小于0.2,更优选地小于0.1,最优选地小于0.05。第二反射系数优选地大于0.1,更优选地大于0.2,此外,第二反射系数优选地小于0.5,更优选地小于0.4,最优选地小于0.3。
在大多数情况下,最好是由结构16偏转或吸收由容器的底部反射的反射微波信号,结构16可以是一个倾斜的板,一个锥形的表面,一种雷达吸收材料等。
在下面的部分中,详细说明本发明的底部反射器的不同的特定实施例。
特定的优选实施例图2a-e表示基于波导截止频率的原理的不同的底部反射器。每个底部反射器包括栅格结构,具有略小于λ/2的栅格间隔,其中λ是微波信号的真空波长,用于阻止当栅格结构位于液面以上时透过微波信号,而改为反射微波信号。当液面上升到栅格结构以上时,由于液体的较高的介电常数,微波信号的波长被减少。因而,栅格对于微波信号显得较宽,因而微波信号可以通过栅格结构。
在图2a中示出了一种包括设置在管子13内的栅格结构的底部反射器。在这种情况下管子13被设置用于支持以H11模进行的微波传播,其中电场的方向基本上和箭头22所示的相同。这种栅格结构由多个导电的最好是金属的带23构成,具有略小于λ/2的间隔,使得当液面低于栅格结构时切断微波信号的传播。
例如在10GHz下,所述间隔可以是14mm,带23可以具有28mm的高度,这样,其在由带形成的波导中相应于λm/2的距离,其中λm是在管子13的液体中(即当液面在栅格结构以下时)微波信号的波长。λm/2的带高使得在某个频带内的传播不发生反射,如同标准的天线屏蔽器一样。结果λm在管子13中被用作本地波长,应当理解,因而在本说明的不同的上下文中,λm是不同的。
由金属或某些介电材料制成的支撑件24用于支撑栅格结构。图2a表示具有直的带的栅格结构,不过它们可以是弯曲的,以便适合于波导模H11的电场的图案。此外,这种栅格结构可以被修改,以便和其它的波导传播模式相匹配。
在一个实施例中,本发明的底部反射器具有网孔栅格结构。另一种改型是,带的部分可以由衰减材料制成,其可以减少反射和透射并增加有用带宽。
在另一个实施例中,如图2b所示,使用包括被同心地设置在管子13中的多个圆形导电带的栅格结构,以便获得用于H01传播模式的相应的操作。H01波导模的电场线22是完整的圆周,因而和电场线平行地设置多个同心的短的圆柱管子或圆环25。例如对于10GHz,圆环之间的距离大约是14mm,不过可以按照H01模的圆柱形波导图案进行修改,高度大约是28mm。在实际的实施中,还包括绝缘材料或金属材料制成的支撑件(未示出)。和H11以及H01的情况类似,用于其它波导模的结构也是可能的。
例如,对于E01模的微波信号,这些带应当沿径向排列。
在图2c中,以横截面侧视图示出了底部反射器的一部分。这个实施例和图2a的实施例类似-其中示出了直的带23。不过,这个实施例还具有防反射结构,其包括水平设置的和带23平行的针26。针26位于带的上下方,距离带大约λ/4。和雷达天线屏蔽器的相应的细节类似,具有许多替代方案用于获得类似的功能,使得增加频率的可用范围和液体介电常数的可用范围,这对于本领域技术人员是容易理解的。
因为当底部反射器被浸入液体中时,沿相反的方向也具有透明性,如果容器的底部是平的或者接近平的,则应当采取措施,以便避免在容器底部的反射也被耦合回到管子13中,因而干扰液体表面的反射。不同的替代方案都是可能的通过底部反射器透射的微波可以被偏转或吸收。
在图2d中示出了一种安装在管子13中的底部反射器15的下方的45度的金属反射器27。这个反射器借助于支撑结构28连附到管子13上,或者连附到容器的底部(未示出)。
根据容器的形状,可以和本发明的所有的底部反射器一道使用类似的偏转反射器(这里称为偏转器)。其角度可以和45度非常不同,并且可以使用非常不同的形状的障碍物,用于散开雷达波,以便阻止其再次进入管子13。
和底部或和管子相连的锥形部件是另一种可用的偏转器的实施例。这个部件在图1中用标号16表示。
在图2e中示出了一种由衰减材料制成的合适形状的部件29,例如碳填充的PTFE,被设置在管子13中的底部反射器15下方的容器的底部,以便在底部获得低的反射。部件29由虚线示出,表示实际的形状可以和所示的盒形的非常不同。例如,该部件的形状使得其可以作为标准的消声吸收器。
虽然图2e表示安装在管子13中的底部反射器15,但是底部反射器另外可以和偏转部件或吸收部件29制成一个整体。这种底部反射器设计将给出由容器底部的真实的反射,而不是由管子13的下部进行的反射。此处所述的一些底部反射器是十分小的(一个或两个λ/2偶极子),显然可以简单而直接地实现这种一体化。
图2f是表示对于不同的频率和对于液体的不同的介电常数(1.7和2.5),在干燥和浸入状态下,即当液面分别处于底部反射器的反射结构的上下方时的反射的反射曲线。此外,示出了在干燥状态下的透射。
实线表示由于当栅格在空气中时的截止条件而产生的近乎全反射,虚线/点划线表示通过λ/2栅格的相应的透射。点划线表示在最低的介电常数下的小的反射,虚线表示在使用的介电常数范围内的最高的介电常数下的相应的反射。在这个范围的中部的介电常数下,反射较低。此外,在一个相当大的频率范围内即9.5-10.5GHz,反射是相当恒定的。
图3a-e表示基于谐振结构的原理的各种底部反射器。每个底部反射器包括包括一种谐振结构,例如包括在干的条件下被调谐为谐振的许多偶极子,使得当容器是空的时产生显著的反射。当谐振结构被浸在液体中时,偶极子被调谐为失谐,因而反射被大大减小。
在图3a中,示出了包括两个叠置的偶极子32的底部反射器。当两个偶极子之间的垂直距离被选择接近于在介电常数为2.1的一般液体中的四分之一波长(λm/4)的时候,当两个偶极子32被调谐使得当周围介质的介电常数非常接近于1时(即空气或气体),产生大约最大的反射。这些设计约束将给出雷达波31的所需的反射条件,如图3f所示。偶极子32连附于垂直支撑销33,其可以由金属或绝缘材料制成。如果垂直支撑销33由金属制成,则整个结构32,33可以由同一个板冲压而成(如图3a所示)。结构32,33被连附于某个支撑34上或者被连附于底部的上方。偶极子的长度在10GHz下一般略低于14-15mm。
在图3b中,示出了一种底部反射器,其包括具有双重的交叉的偶极子32,35的元件,以实现偏振独立功能。除去图3a所示的偶极子32之外,还提供有两个交叉的相同长度的偶极子35。交叉的偶极子最好不相互连接,图2c表示在绝缘销33上的安装。
在图3c中,和图3a或3b的实施例类似的一种反射结构被安装在管子13的中部。对于H11模,谐振反射器可被安装在波导管13的中部。如果偏振是已知的,则可以使用单个的偏振模型32,或者附加选择的偶极子35,从而制成独立于偏振的反射器。
对于许多波导模,在中部横向电场低。这种情况可以通过使用多个谐振结构被覆盖,一般使用如图3a所示的谐振结构。在图3d中,示出了在管子13中的这种实施例。利用按照微波信号的模的场图案设置的2-4个谐振结构,可以获得一种模式特定的反射。图3d的实施例尤其适用于以H01传播模式传播的微波信号。
获得用于H01模的谐振结构的另一种方式是在管子13的中部设置一个环37,如图3e所示的结构。环37当其在干的条件下其圆周是一个波长时(或波长的整数倍)具有谐振。这种谐振在湿条件下被改变。两个或多个环可被叠置在一起,如图3a-b的偶极子那样。由于传播H01模的管子13的中部的小的电场,反射将比由图3d所示的实施例获得的反射低得多,这对于具有低反射的液体例如某些液体气体可能是有利的。
这个实施例也可以应用于不以H01模传播的微波。对于H11模的微波,环形例如将使得反射是偏振独立的,因而可用作交叉的偶极子图3f表示一种偶极子结构的反射,所述偶极子结构由两个偶极子构成,它们以相应于λm/4的距离垂直叠置,被浸在一种典型的液体(在这种情况下介电常数ε=2.1)中。偶极子的长度大约相当于当偶极子是干的(即当它们略短于λ/2时)时的最大反射。对于一种典型的带宽,在浸入条件下的反射比在空气(或周围气体)中的反射至少弱20dB。该图应当和最强的反射(在干的条件下)比较,其一般比金属表面的反射低10-20dB。在浸入条件下反射的减少是由于偶极子的失谐和垂直空间使两个偶极子互相抵消的结果。因而,这个偶极子组合在干的条件下产生类似于油表面的反射,而在浸入条件下给出相当低的反射。可以叠置两个以上的偶极子,以便在浸入条件下产生雷达回波的更宽的宽带抑制,可以使用偶极子之外的其它的谐振结构。
图4a-b表示基于和绝缘的雷达天线屏蔽器有关的原理的不同的底部反射器。
在图4a中,示出了电介质板41,板41具有多个孔42,最好是通孔(和一般的天线屏蔽器相反)。板41的厚度和与板的体积相比的孔的体积被这样选择,使得板41在处于液体表面的下方时,获得λm/2的反射厚度,其中λm是在具有充有液体的孔的电介质中微波信号的波长,以便把反射减到最小。在干的条件下,板41的有效的介电常数被改变,因而由微波信号经历的厚度被改变。因而,当半波长条件不再满足时,反射增加。
实现类似的不均一的行为的另一种合适的几何结构是一种由水平排列的绝缘棒或销构成的板。
图4b示出了另一种反射结构,其基于平而相当薄的在其底面上装配有小的电介质元件44的板43。平的上侧使得能够利用传统的机械装置容易地进行精确的参考测量。
图4c是部分填充的电介质板即图4a所示的板在一个典型的频率范围内的反射曲线。在这个例子中的电介质板是打孔率为50%的PTFE板,一半的体积是PTFE,一半是空的。在干的条件下,平均介电常数是PTFE和空气(气体)的介电常数的平均值,在浸入条件下,平均介电常数是PTFE和液体的介电常数的平均值。在浸入条件下,在带的中部厚度非常接近λm/2,因而大大减少反射,但是在干的条件下,希望具有某个反射,这是通过使有效的电气厚度显著地偏离λm/2来实现的。
在参照图4a-c讨论的所有这些情况下,要被充满液体的孔隙的精确的形状不是非常重要的。因为本领域的技术人员能够容易地看出,介电材料的部分可以由衰减材料(例如碳加载的PTFE)构成,其使得反射和透射较低。
图5a-c说明基于偏振旋转结构的原理的不同的底部反射器。
图5a-b表示一种在天线工程中被称为扭转反射器的反射器,见“The handbook of antenna design,Volumes 1 and 2,editorsA.W.Rudge et al.,Peter Peregrinus Ltd,1986,pages 184-185”,以及“Antenna Engineering Handbook,Third edition,editor R.C.Johnson,Mcgraw-Hill,Inc.,1993,pages 17-28-17-29”,这些章节被包括在此作为参考。
扭转结构51包括由导电材料制成的多个直的和平行的隆脊52。最好是,其是一个金属板,其可以被铸造而成,从而获得多个隆脊。当液体在反射器51的隆脊52的上方时,隆脊大约λm/4高,并具有λm/4-λm/2的间距。反射器51可以设置在管子13的下端部,在这种结构中薄的隆脊52和以H11波导模传播的进入的微波信号的平均电场53成45度。
为了理解扭转功能,可以把进入的电场看作是与场线53相比的方向为-45度和+45度的两个场的叠加。这些场中的一个和隆脊52平行,并被隆脊52的顶部反射,而其它的偏振将几乎不受隆脊52的影响,但是将受到暴露在隆脊52之间的反射器结构的反射。由于隆脊52的高度是λm/4,将引入2×90=180度的相移,这又使反射的微波的电场54相对于进入的微波的电场53扭转90度。这个行为类似于在天线工程中标准的扭转反射器的功能。不过,明显的差别是,填充隆脊之间的空间的材料的介电常数根据其是液体或空气/气体而不同。一旦容器是空的,则扭转功能将只是局部的,并且能够获得来自反射器51的反射。
本实施例的一个重要的特征在于,反射器是非常薄的,因而可以设置在非常靠近容器的底部,使得能够进行接近底部的水平测量。
本领域技术人员应当理解,更复杂的结构将使得能够允许较宽范围的液体的不同的介电常数和不同的频率。
应当进一步理解,在上面说明的实施例中用于水平测量的微波信号具有特定的偏振状态,并且对于所述特定的偏振状态,给定如上所述的和记载在所附权利要求中的第一、第二反射系数。因而,在液体中反射时使线性偏振的微波信号的偏振转动的效果相当于减少在微波信号的特定的偏振状态下的反射系数。
偏振转动的原理还可应用于把反射的微波的传播模式改变为另一种模式,如图5c所示。扭转结构可以由螺旋结构来实现,其把反射的微波的传播模式从H01改变为E01,如授予K.O.Edvardsson的美国专利4641139所述,该专利的内容被包括在此作为参考。借助于在由导电材料或衰减材料制成的板56上多个合适设置的偶极子55可以获得类似的功能。这种结构和图3d所示的结构具有类似性,不过其中具有板56,并且具有更多的不同指向的偶极子55。此外,在图5c中的偶极子55是单个的和不被叠置的。
这些偶极子形成一个频率敏感的表面,给出可以和底部板55相比的但是具有不同的偏振和相位的反射。如果入射的微波在管子13中以H01模传播,当反射器被浸在液体中并被合适的设计时,则反射的微波将主要以E01模传播。和已知的频率敏感表面对照,当反射器处于干条件时,这个将被失谐,大量的反射的微波将以H01模传播。
因而,图5c的反射器的合适的设计用于当反射器被浸入液体中时保证在进入波导模中的非常小的反射,而当反射器在空气或气体中时用于保证在进入的波导模下的相当强的反射。
根据底部板的材料,在进入波导模中的反射可以是非常强的,即几乎是全反射,(如果板55是金属的)或者可以是和来自油表面的反射相比的(如果板55是由合适的衰减材料制成的)。本领域技术人员可以容易地看出,衰减材料可以被包括在偏振旋转的任何一个实施例中,以便调节在干条件下的反射。
图6表示基于局部减小管子的横截面积的原理的底部反射器。为了减小或者消除来自管子13的下方的容器底部的雷达回波,可以使用一种装置,其使管子的直径改变为一个较小的直径,其可以在一个小的空间内弯曲,以便引导雷达波离开管子13。一个实施例基于漏斗61,其只使用适合于靠近容器的底部60安装的材料,其向下把直径减少为接近于单方式波导的直径。这种波导62可以容易地提供有靠近底部60上方的弯曲部分63,以便引导微波通过波导部分64离开。
波导部分64可以被容易地设计,使得在波导被充满熟知的性能的液体时(包括一定范围内的碳氢化合物),给出一个低的反射。可以使得离开容器底部60和管子13的端部的距离非常短。漏斗61和波导可被连附于容器底部60上,或者连附于管子13上。
如果波导62是窄的以便当波导62被浸在液体中时把传播限制为一种模式,则在干条件下的传播将被切断,因而空的容器将具有在漏斗61的底部的反射。
漏斗61的一种代替方案是在容器的底部安装一种锥形的传导的或抵抗的结构,使其顶部在管子内基本上指向上方,最好离开管子的底端至少一个管子的直径(未示出)。需要在管子的底端和锥形结构的包络表面之间的某个空间,以便获得从锥形结构上方的管子向由所述管子和所述锥形结构一道形成的同轴波导的平滑过渡。当微波被传播到管子的底端之外时,它们将被偏转而离开管子。在这样形成的同轴波导中,可以提供衰减材料。利用一种合适的谐振结构(例如在同轴波导中的半波长槽),可以获得一种底部反射器,其在被浸在液体中时,具有非常小的反射,而在干条件下则具有强得多的反射。
最后,图7表示当使用微波的自由空间传播即当没有用于引导微波的管子时的一种可以应用的底部反射器。雷达水平仪11被安装在容器12的顶部,具有天线束76的主方向77,其接近于垂直,以便能够接收来自液面71的反射。当液体表面71接近底部时,如果水74刚刚超过底部75,则发生作为一般的且类似的问题的干扰问题。开始时不知道水面的确切位置,并且其可以给出比底部75较强的雷达回波。
当本发明应用于这种情况时,底部反射器72被安装在支撑件73上,靠近底部。底部反射器72可以和图2a的类似,不过其必须大得多。一个π*[平方根(hλ)]2/4的大致面积在反射时是有效的,其中h是从水平仪11到底部反射器72的距离,因此底部反射器应当具有至少覆盖有效反射面积的主要部分的面积。此外,当底部反射器72具有类似于图2a所示的结构时,其将不会积聚任何的水或者泥浆,这是有利的。
在本发明的一个特定的实施例中,底部反射器72可以具有较小的尺寸。如果通过底部反射器72透射的相移被控制,使得通过底部反射器72的底部反射或水反射的部分将抵消来到底部反射器72的外部的反射的部分。这样,使得不仅来自底部反射器72的反射是低的,而且来自底部或者来自水表面的反射也是低的。支撑销73应当相对于期望的水的水平尽可能低。
本领域的技术人员应当理解,参照图2-5所述的底部反射器的原理也可以应用于被设置用于不被任何管子引导的微波的发送和接收的水平仪。
权利要求
1.一种用于基于雷达的水平仪(11)的底部反射器(15),所述水平仪借助于从容器的顶部朝向液体的表面发射微波信号、接收由液体表面反射的微波信号、并由发射的和反射的微波信号的传播时间计算在容器中存储的液体的水平,来测量在容器(12)中存储的液体的水平(71),所述底部反射器(15)可被安装在所述容器中的预定的高度,用于在容器中的所述预定高度没有液体时反射微波信号,其特征在于,所述底部反射器(15)包括反射结构(23-24;25;23,26;27;29;32,33;32,35;36;37;41,42;43,44;51-52;55-56;61;72),当液体的水平在反射结构以上时,所述反射结构具有对于所述微波信号的第一反射系数,当液体水平在反射结构以下时,具有对于所述微波信号的第二反射系数,其中所述第一反射系数远小于所述第二反射系数。
2.如权利要求1所述的底部反射器,其中所述反射结构对于所述微波信号的第一反射系数比所述液体的表面对于所述微波信号的反射系数低,最好是低得多。
3.如权利要求1或2所述的底部反射器,其中所述反射结构对于所述微波信号的所述第二反射系数和所述液体的表面对于所述微波信号的反射系数的大小近似相同,或者略高于所述液体表面对于所述微波信号的反射系数。
4.如权利要求1-3中任何一个所述的底部反射器,其中所述液体具有在1.6-3范围内的介电常数。
5.如权利要求1-4中任何一个所述的底部反射器,其中所述液体是在包括原油、液体石油气(LPG)、液体天然气(LNG)、其它的碳氢化合物液体和对于所述微波信号至少部分透明的液体的组中的一种液体。
6.如权利要求1-5中任何一个所述的底部反射器,其中所述微波信号具有特定的偏振状态;所述对于微波信号的第一和第二反射系数是在所述特定的偏振状态下给出的。
7.如权利要求1-6中任何一个所述的底部反射器,其中所述微波信号处于一个特定的频率范围内。
8.如权利要求1-5中任何一个所述的底部反射器,其中所述第一反射系数小于0.2,优选地小于0.1,更优选地小于0.05。
9.如权利要求1-8中任何一个所述的底部反射器,其中所述第二反射系数大于0.1,优选地大于0.2。
10.如权利要求1-7中任何一个所述的底部反射器,其中所述第二反射系数小于0.5,优选地小于0.4,更优选地小于0.3。
11.如权利要求1-10中任何一个所述的底部反射器,其中所述反射结构适用于借助于人工浸挂的手动水平测量。
12.如权利要求1-11中任何一个所述的底部反射器,其中所述水平仪包括一个基本上垂直的管子(13),在其中引导发射的和反射的微波信号。
13.如权利要求12所述的底部反射器,其中所述底部反射器(15)可被安装在所述基本上垂直的管子(13)的下端部。
14.如权利要求12或13中任何一个所述的底部反射器,其中所述微波信号具有特定的传播模式;所述对于微波信号的第一和第二反射系数是在所述特定的传播模式下给出的。
15.如权利要求12-14中任何一个所述的底部反射器,其中所述反射结构是切断栅格(23-24;25;23,26;27;29)。
16.如权利要求15所述的底部反射器,其中所述微波信号以H11模传播,所述切断栅格包括多个和所述微波信号的电场实质上平行地设置的实质上平行的带(23)。
17.如权利要求15所述的底部反射器,其中所述微波信号以H01模传播,所述切断栅格包括和所述微波信号的电场平行地设置的多个同心设置的环形带(25)。
18.如权利要求1-17中任何一个所述的底部反射器,还包括设置在所述反射结构的下方的偏转结构(27)。
19.如权利要求1-17中任何一个所述的底部反射器,还包括设置在所述反射结构的下方的吸收结构(29)。
20.如权利要求12-14中任何一个所述的底部反射器,其中所述反射结构是一种谐振结构,最好包括偶极子(32,33;32,35;36;37)。
21.如权利要求20所述的底部反射器,其中所述谐振结构包括叠置的偶极子(32)。
22.如权利要求20或21所述的底部反射器,其中所述反射结构包括双交叉的偶极子(32,35)。
23.如权利要求20-22中任何一个所述的底部反射器,其中所述微波信号以H11模传播,所述谐振结构包括设置在所述基本上垂直的管子(13)的中心轴线上的单个偶极子元件(32,35)。
24.如权利要求20-22中任何一个所述的底部反射器,其中所述微波信号以H01模传播,所述谐振结构包括在所述基本上垂直的管子(13)内与中心轴线隔开地沿周向设置的多个偶极子元件(36)。
25.如权利要求20-22中任何一个所述的底部反射器,其中所述微波信号以H01模传播,所述谐振结构包括一个环(37),其具有和所述基本上垂直的管子(13)的中心轴线一致的对称轴线。
26.如权利要求12-14中任何一个所述的底部反射器,其中所述反射结构是一种电介质反射器(41,42;43,44)。
27.如权利要求26所述的底部反射器,其中所述电介质反射器是具有多个孔的板(41,42)。
28.如权利要求26所述的底部反射器,其中所述电介质反射器包括具有面向下方的小的电介质部件(44)的实质上水平设置的板(43)。
29.如权利要求12-14中任何一个所述的底部反射器,其中所述反射结构是一种偏振旋转结构(51-52;55-56)。
30.如权利要求29所述的底部反射器,其中所述偏振旋转结构是一种包括隆脊(52)的扭转反射器结构(51)。
31.如权利要求29所述的底部反射器,其中所述偏振旋转结构包括反射器(55)和多个不同取向的偶极子(56)。
32.如权利要求12-14中任何一个所述的底部反射器,其中所述反射结构是一种微波引导结构,其被设置在所述基本上垂直的管子(13)内,并通过所述反射结构发射的和反射的微波信号被引导离开所述基本上垂直的管子(13)的内部。
33.如权利要求32所述的底部反射器,其中所述微波引导结构是漏斗(61)。
34.如权利要求1-11中任何一个所述的底部反射器,其中所述水平仪适宜微波信号的自由空间传播。
35.如权利要求34所述的底部反射器,其中所述反射结构是一种切断栅格,一种谐振结构,优选地包括偶极子,一种电介质反射器,或一种偏振旋转结构。
36.如权利要求34或35所述的底部反射器,其中所述反射结构(72)覆盖一个面积,所述面积至少是在所述基于雷达的水平仪下方的面积为π*[平方根(hλ)]2/4的基本部分,其中h是从所述基于雷达的水平仪到所述底部反射器的距离,λ是所述微波信号的波长。
37.如权利要求34或35所述的底部反射器,其中所述底部反射器(72)的面积小于在底部反射器的高度上所述微波信号的面积;并且当液体的水平在所述底部反射器上方时,通过底部反射器(72)透射的微波信号的相移被这样控制使得在底部反射器(72)的外面由容器的底部反射的微波信号的部分和已经通过所述底部反射器(72)之后由容器的底部反射的微波信号的部分相互抵消。
38.如权利要求1-36中任何一个所述的底部反射器,其中所述底部反射器可被安装在靠近所述容器的底部附近。
39.一种包括如权利要求1-38中任何一个所述的底部反射器(15)的基于雷达的水平仪(11)系统。
全文摘要
一种用于基于雷达的水平仪(11)的底部反射器(15),所述水平仪借助于从容器的顶部朝向液体的表面发射微波信号、接收由液体表面反射的微波信号、并由发射的和反射的微波信号的传播时间计算在容器中存储的液体的水平,来测量在容器(12)中存储的液体的水平(71),所述底部反射器(15)可被安装在所述容器中的预定的高度,用于在容器中的所述预定高度没有液体时反射微波信号,其特征在于,所述底部反射器(15)包括反射结构(23-24;25;23,26;27;29;32,33;32,35;36;37;41,42;43,44;51-52;55-56;61;72),当液体的水平在反射结构以上时,所述反射结构具有对于所述微波信号的第一反射系数,当液体水平在反射结构以下时,具有对于所述微波信号的第二反射系数,其中所述第一反射系数远小于所述第二反射系数。
文档编号H01Q15/22GK1745290SQ200480003107
公开日2006年3月8日 申请日期2004年1月28日 优先权日2003年1月29日
发明者库尔特·O·爱德华松 申请人:Saab罗斯蒙特储罐雷达股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1