电子束微细加工方法

文档序号:6844187阅读:297来源:国知局
专利名称:电子束微细加工方法
技术领域
本发明涉及,在化合物半导体基板、特别是在GaAs以及InP基板上外延生长的AlxGayIn1-x-yAszP1-z层表面的电子束微细加工方法。
背景技术
近年来,随着构成微电子核心的ULSI集成度的提高,正在寻求着这些量子装置的电路图案微细化。目前,在半导体装置的制作工艺中,绝缘膜和金属薄膜这样的多余部分一般是采用各种各样的蚀刻术来消除的,这些蚀刻术是按照抗蚀图以高精确度去除的基本技术。作为一种蚀刻术,有一种是采用卤气的干蚀刻。这种干蚀刻是在高真空中比较清洁的气氛内的蚀刻,因此被期待能够制作微小的量子装置等的构造。
比如作为装置原料的代表性原料Si,一般采取氟以及氯系的卤气进行干蚀刻。虽然对包含有GaAs的AlxGayIn1-x-yAszP1-z等化合物半导体也采用干蚀刻工艺的报告很多,但是实际上使量子元件的制造成为可能的技术手段并没有完成。
比如,GaAs比Si电子的移动度要大,为比Si更适合做高周波、高速操作的材料。从资源的丰富性、结晶的完整性等方面看,代替靠工业规模大发展起来的Si,GaAs作为能够克服其性能限制的一种化合物半导体,其卓越的性能与多样性被瞩目。此GaAs等化合物半导体的外延结晶生长技术的MBE(分子束外延生长)法、MOCVD(有机金属化学气相沉积)法等技术都有进步,使得优质结晶的生长成为可能。因此其作为化合物半导体的装置材料的重要性正在提高。
本发明者为了克服对于化合物半导体等目前采用的卤气的干蚀刻方法的技术限制,开发出了在半导体结晶表面上用溴化物以单原子层单位实施干蚀刻的方法,并已在特开平8-321483号公报上公开。
但是,为了在GaAs层表面上形成高精度的电路图案,即使采用上述的以单原子层单位的干蚀刻,也需要形成干蚀刻用掩模。
目前,制造这种干蚀刻用掩模方法有,比如特开2001-267213号公报所记载的电子束石版印刷术。
但是,随着近年的量子装置中电路图案的微细化和复杂化,此干蚀刻用掩模的制作越来越困难,形状、尺寸的重现性下降,并且制造成本也变得非常高,成为问题。
而且,GaAs层表面有自然形成的As2O3、As2O、Ga2O等的表面氧化膜,在制作干蚀刻用掩模的时候,还需要先除掉此表面氧化膜。
本发明,针对上述问题,其目的在于提供一种电子束微细加工方法,其不必预先除掉在GaAs层表面上自然形成的As2O3、As2O、Ga2O等表面氧化膜,并且不需要掩模形成用于形成复杂、微细化电路图案的干蚀刻用掩模,而是在包含有GaAs的AlxGayIn1-x-yAszP1-z层表面上,直接形成用于量子装置上的、微细并且长宽比不同的电路图案。

发明内容
本发明的电子束微细加工方法是,在包含有单体GaAs以及InP基板的AlxGayIn1-x-yAszP1-z(0≤x、y、z≤1)表面所形成的GaAs薄膜表面上,用调节为任意电子束直径以及电流密度的电子束进行照射,使在上述GaAs表面上形成的自然氧化膜选择性置换成或者生成Ga2O3后,对于上述GaAs层表面用溴化物以单原子层单位进行干蚀刻,把已经置换成上述Ga2O3部分以外的上述自然氧化膜以及GaAs和AlxGayIn1-x-yAszP1-z选择性的除掉。
这样,本发明的电子束微细加工方法,可以不需要制作和使用在干蚀刻时所用的干蚀刻用掩模,通过控制电子束剂量来改变对蚀刻有耐性的Ga2O3的结晶化度,从而自由调整在AlxGayIn1-x-yAszP1-z层表面上形成的图案形状以及长宽比。因此,像近年的量子装置上面所使用的电路图案那样,也可用于更复杂化、微细化的电路图案。


图1为本发明涉及的电子束微细加工方法的实施方式例的说明图。
图2为利用AMF观察本发明涉及的电子束微细加工方法的各电子束剂量所造成的基板表面情况的照片。
图3为利用AMF观察本发明涉及的电子束微细加工方法的各电子束剂量所造成的基板表面情况的照片,为图2的放大图。
图4为利用AMF观察本发明涉及的电子束微细加工方法的各电子束剂量所造成的基板表面情况的照片,为图3的透视图。
图5为利用AFM观察电子束剂量不同时形成微细构造物长宽比不同的结构照片。
具体实施例方式
本发明的实施方式涉及的电子束微细加工方法,是在包含有单体GaAs以及InP基板的AlxGayIn1-x-yAszP1-z层表面所形成的GaAs薄膜表面上,用调节为任意电子束直径以及电流密度的电子束进行照射,使在上述GaAs表面形成的自然氧化膜选择性置换成或者生成Ga2O3后,对于上述GaAs以及AlxGayIn1-x-yAszP1-z层表面用溴化物以单原子层单位进行干蚀刻,把已经置换成上述Ga2O3部分以外的上述自然氧化膜以及GaAs和AlxGayIn1-x-yAszP1-z除掉。上述溴化物使用AsBr3、PBr3、GaBr3、InBr3中的任意一种。并且,通过控制上述电子束照射量(剂量),把上述GaAs自然氧化膜层置换成结晶化度不同的Ga2O3,来控制上述干蚀刻时的蚀刻抗性,可以在真空连续的同一工序中形成长宽比不同的微细构造物。其中,上述电子束的加速电压优选在50keV以下,剂量优选为1016~1020eletron/cm2。
本发明的实施方式涉及的电子束微细加工方法,是在AlxGayIn1-x-yAszP1-z层表面形成的GaAs薄膜表面的自然氧化膜上直接用调整为任意电子束直径以及电流密度的电子束进行照射,把GaAs层表面上自然形成的As2O3、As2O、Ga2O等自然氧化膜选择性的置换成化学上稳定的Ga2O3。然后把其余的As2O3、As2O、Ga2O等氧化物放在10-3Pa以下左右的减压环境下进行选择性热脱离。此时,置换后的稳定氧化膜(Ga2O3)就起到在目前的石版印刷法中使用的掩模一样的作用,在AlxGayIn1-x-yAszP1-z层母材上用AsBr3、PBr3、GaBr3、InBr3等溴化物的气氛对每单原子层进行蚀刻,这样化学上稳定的氧化膜的Ga2O3就残留在AlxGayIn1-x-yAszP1-z层表面上,从而在AlxGayIn1-x-yAszP1-z层表面就可以形成任意图案。因此,电子束照射时,通过在AlxGayIn1-x-yAszP1-z层表面上描绘任意图案等,AlxGayIn1-x-yAszP1-z层表面的电子束照射部位就会形成化学上稳定的Ga2O3,该Ga2O3在用溴化物进行干蚀刻时不会被侵蚀,这样在AlxGayIn1-x-yAszP1-z层上就可以加工任意图案了。
而且,当把电子束照射时的剂量加大,被置换的Ga2O3的结晶化度就会提高,与此同时对干蚀刻的掩模的抗性也会提高,这样在蚀刻后,形成的微细构造物的长宽比就会加大。也就是说如果想加大蚀刻后形成的微细构造物的长宽比,只要加大电子束的剂量,就可以以纳米级单位控制AlxGayIn1-x-yAszP1-z层表面图案的线宽等。
以下参照附图,说明本发明涉及的离子束微细加工方法的一例实施方式。图1中的1是GaAs层,2是在GaAs层1表面上自然形成的As2O3等表面的自然氧化膜。并且在图1中,从左至右、即从图1(a)到图(c),电子束的剂量增加。
本实施方式涉及的电子束微细加工方法,首先,不除去在GaAs层1表面上自然形成的As2O3等自然氧化膜2,在高真空中用加速电压在50keV以下、优选在20keV以下,剂量在1016~1020eletron/cm的电子束照射这个自然氧化膜2。电子束的剂量要根据电子束的电流量以及照射时间适当调整、进行控制。通过电子束的照射,自然氧化膜2的As2O3、As2O等氧化物被置换成化学上稳定的Ga2O33(参照图1(a)上段)。然后,把表面氧化膜2的一部分已经置换成Ga2O33的GaAs层1升温至580~620℃、对Ga2O33以外的表面氧化膜2进行热脱离,其后用溴化物进行照射,由此蚀刻其表面,以原子层一层单位进行干蚀刻,除去被置换成Ga2O33以外的部分(参照图1(a)下段)。此刻,通过电子束图案化GaAs层1的表面形成规定的电路图案,就可以在GaAs层1表面上加工任意的电路图案。
通过使用这种干蚀刻能够重现性高地得到平坦性良好的表面。具体地说,利用这种溴化物的干蚀刻中,被逐渐蚀刻的原子是表面突出部分和凹陷部分的原子,由于把导致表面凹凸的突出和凹陷的部分优先蚀刻掉,所以能把原子层以一层单位进行蚀刻。这种以一层单位蚀刻所得到的表面是非常平坦的。就是说能在原子层面得到平坦的表面。另外这个办法与面指数无关,可以进行均等的蚀刻。因此,GaAs结晶表面(100)、(110)、(111)的任何一面都可以不考虑面指数情况,以一层单位进行蚀刻,就是说,可以当场用纳米级单位控制蚀刻的深度以及控制加工区域的侧面形状。
这个干蚀刻之中,用溴气在超高真空中,比如在向10-7Pa级排气后,在580~620℃下、V族分子气体分压为10-3~10-7Pa下导入蚀刻剂气体(溴气)就可以实施蚀刻。在此作为蚀刻气体的溴化物,优选以与As形成的化合物AsBr3和与P形成的化合物PBr3为代表的物质。当然,也可以是其他物质。
这样,因为可以在表面原子层每一层单位进行蚀刻,因此可以以纳米级单位对通过电子束照射被置换成微细尺寸的、在化学上稳定的Ga2O3以外的AlxGayIn1-x-yAszP1-z层表面所存在的自然氧化膜部分进行加工,可重现性良好并且容易地形成长宽比高的微细构造,可以进行负片石版印刷。
与上述情况相比,将电子束4照射时间加长、剂量增多,如图1(b)、(c)所示,可以把Ga2O33的长宽比加大。
这样,通过本发明涉及的电子束微细加工方法,不除去在GaAs层表面上自然形成的As2O3等自然氧化膜,而对这个自然氧化膜进行电子束照射,就可以在表面上形成化学上稳定的Ga2O3。然后,通过控制电子束的剂量就可以控制用溴化物进行干蚀刻后的GaAs层表面形成的Ga2O3的结晶化度,从而可以形成长宽比不同的构造物。而且,电子束照射时按照规定的电路图形图案在GaAs层表面用电子束描绘,就可以容易的把任意电路图案重现性良好地加工出来。用此办法,可以用于半导体装置、波长识别装置、微加工、光子晶体、微细部件等的微细加工,量子细线、量子箱等。
另外,在本实施方式例中,对GaAs层进行了说明,但只要是AlxGayIn1-x-yAszP1-z层,能够达到与本实施方式例中说明的GaAs层同样的效果,就不限于GaAs层。
以下,用实施例更具体的说明本发明。
(实施例)向在GaAs层表面上自然形成的As2O3等表面氧化膜的表面,在高真空中用加速电压为30kV、电流量为5×10-7A、照射时间为1~9μsec/dot、电子束直径为0.1μm的电子束照射。这时,通过电子束,以10μm的间隔将1μm宽的线描绘成格子状。而且,通过改变照射时间,把剂量改变,具体如下。
(1)0.6×1019电子/cm2(2)1.2×1019电子/cm2(3)1.8×1019电子/cm2(4)2.4×1019电子/cm2(5)3.0×1019电子/cm2(6)3.6×1019电子/cm2(7)4.2×1019电子/cm2(8)4.8×1019电子/cm2(9)5.4×1019电子/cm2用以上各剂量的电子束照射之后,导入至超高真空装置、向10- 6Pa级排气之后,把温度提高到600℃,除去Ga2O3以外的氧化膜,之后再在580℃下,导入气体分压为10-6~10-5Pa下的AsBr3气体,进行17分钟的蚀刻。
图2~图4所示为各个剂量时用原子间力显微镜(AFM)观察的照片。图中的各编号与上述的各剂量相对应。
电子束的剂量越多,在GaAs层表面上形成的各图案的线就越宽,这可以从图2~图4看出。可以看出,通过控制电子束的剂量,就可以形成线宽不同的电路图案。
图5所示为用AFM观察电子束剂量不同时,形成的微细构造物的长宽比不同的照片。如图5所示,长宽比电子束的剂量越多,长宽比越大。另外,图中的各编号,与上述电子束剂量相对应。
如上所述,在GaAs层表面上形成的自然氧化膜用电子束照射,能够形成用溴化物蚀刻不掉的化学上稳定的Ga2O3,而且通过对电子束剂量的控制,可以在同一装置中通过连续工序,以纳米级单位控制和加工在GaAs层表面上形成的图案线宽和平面形状比,所以可以大幅削减制造成本。
就像以上详细说明过的一样,通过本发明,不用除去在含有AlxGayIn1-x-yAszP1-z层等化合物半导体的半导体结晶表面上自然形成的自然氧化膜,而是通过对此自然氧化膜注入电子束,就可以形成不被溴化物蚀刻的结晶化度高的化学上稳定的Ga2O3。因此,不使用目前蚀刻时采用的蚀刻用掩模,就可以在表面上加工任意的电路图案。并且,通过控制电子束的剂量,可以以纳米级单位加工在AlxGayIn1-X-yAszP1-z层表面上形成的图案的线宽以及长宽比。
本发明不只限于上述的实施方式和实施例。在本发明的精神与范围之内,可以有各种各样的实施方式与实施例。
产业实用性通过本发明,能够实现发挥多种量子装置特性的有用元件,比如量子细线、量子箱、衍射光栅、微观机器。
权利要求
1.一种电子束微细加工方法,为负型石版印刷术,能够对在包含有单体GaAs以及InP基板的AlxGayIn1-x-yAszP1-z(0≤x、y、z≤1)表面上形成的GaAs薄膜表面上,用调节为任意电子束直径和电流密度的电子束进行照射,使上述GaAs表面上形成的自然氧化膜选择性置换成或生成Ga2O3之后,将上述GaAs层表面用溴化物以单原子层单位进行干蚀刻,选择性除去已经置换成上述Ga2O3部分以外的上述自然氧化膜以及GaAs和AlxGayIn1-x-yAszP1-z。
2.如权利要求1所述的电子束微细加工方法,上述溴化物为AsBr3、PBr3、GaBr3、InBr3中的任意一种。
3.如权利要求1或2所述的电子束微细加工方法,通过控制上述电子束的照射量能够当场以纳米级单位控制上述AlxGayIn1-x-yAszP1-z层表面的蚀刻深度、以及控制加工区域的侧面形状。
4.如权利要求1或2所述的电子束微细加工方法,其中,控制上述电子束的照射量控制电子束剂量,在上述GaAs层表面上生成结晶化度不同的Ca2O3,由此控制进行上述干蚀刻时的蚀刻量,在同一工序中形成长宽比不同的微细构造物。
5.如权利要求1~5任意一项所述的电子束微细加工方法,上述电子束的加速电压在50keV以下,剂量为1016~1020电子/cm2。
全文摘要
在包含有单体GaAs以及InP基板的Al
文档编号H01L21/461GK1795541SQ200480014758
公开日2006年6月28日 申请日期2004年5月25日 优先权日2003年5月26日
发明者金子忠昭, 阪上洁, 佐野直克 申请人:学校法人关西学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1