红外线传感器及其制造方法

文档序号:6865385阅读:257来源:国知局
专利名称:红外线传感器及其制造方法
技术领域
本发明涉及红外线传感器及其制造方法。
背景技术
作为现有技术的热电堆(thermopile)型的红外线传感器,已知有下述专利文献1~3中所示的。在这种红外线传感器中,以邻接的多晶硅与铝形成热电偶,由利用此热电偶的红外线检测部检测入射的红外线。
热电堆是将热电偶串联排列于微小的面积中的。热电偶是利用,以两种金属制造电路、将其两个接合点保持在不同的温度时,产生热电动势并通过电流的“塞贝克效应(Seebeck effect)”的原理的温度传感器。热电偶测定测温接点(温接点)与基准接点(冷接点)之间的热电动势。
专利文献1所示的红外线传感器是,在悬臂梁上形成由p型半导体与n型半导体所构成的热电偶的例子。它们是,从由根据塞贝克效应的热电偶的温接点与冷接点的温度差异而产生的热电动势、测定入射于红外线传感器的红外线量,通过配置多个热电偶而实现红外线传感器的高灵敏度化。另外,在专利文献3中记载了具备红外线滤光片的红外线传感器。在专利文献3中表示有在绝缘基板上形成红外线传感器的例子。
专利文献1日本特许2663612号公报专利文献2日本特开平6-249708号公报专利文献3日本特开2001-174324号公报发明内容发明所要解决的问题然而,当在半导体基板上形成取出输出用的贯通孔,并且在其上贴合硅基板时,在红外线检测部与硅基板之间需要用于提高温度检测特性的空间,存在由该空间内部与红外线传感器外部的压力差而使形成于贯通孔的绝缘膜等劣化·破损、特性劣化之类的问题。
本发明是鉴于这样的问题而做成的,其目的提供可提高特性的红外线传感器及其制造方法。
用于解决问题的方法为了解决上述课题,本发明的红外线传感器,其特征在于,具备形成有红外线检测部的半导体基板;面对于半导体基板的红外线透过基板;及部分介于前述半导体基板和前述红外线透过基板间,并在这些基板间赋予空间的黏着层;且前述半导体基板在面对于黏着层的位置上,具有取出来自红外线检测部的电信号的贯通孔。
入射于此红外线传感器的红外线,透过红外线透过基板,入射到热电偶等的红外线检测部。红外线检测部将入射于此的红外线转换成电信号。此电信号经由贯通孔而在外部取出。红外线检测部配置于由介于半导体基板及红外线透过基板间的黏着层所形成的空间内。因此,可提高对于红外线检测部的温度变化的应对特性。
贯通孔设置于面对于此黏着层的位置。因此,在例如安装时等,即使产生上述空间内外的压力差,贯通孔及其底部由黏着层支撑,也可抑制该贯通孔及形成于此的绝缘膜的劣化·破损,提高红外线传感器的特性。
此外,优选在上述空间内,设置抑制红外线透过基板的朝向红外线检测部的弯曲的弯曲防止壁。当红外线透过基板弯曲时,其邻接于红外线检测部,可能会有由于红外线检测部破损而邻接而导致热传导增大、灵敏度降低。该弯曲防止壁,为了防止这种破损或灵敏度劣化而设置,弯曲防止壁的自半导体基板的高度高于红外线检测部的上表面,且当红外线透过基板弯曲时,其邻接于弯曲防止壁,可以抑制红外线透过基板的弯曲量。
优选当红外线检测部的数目为多个时,弯曲防止壁设置于红外线检测部间。即,当红外线检测部为多个时,虽然红外线透过基板大型化,但是此时,通过将弯曲防止壁设置于红外线检测部间,可整体抑制弯曲量。
优选红外线检测部形成于形成在半导体基板上的膜结构上,此时,可提高对于红外线检测部的温度变化的应对性。
此外,优选经由前述黏着层而前述半导体基板与前述红外线透过基板之间的空间为真空。对于热能的移动,可考虑热传导、对流、辐射。后面也会描述,来自红外线检测部的热的移动中,热传导相关的部分,由于在不易传导热的薄膜上形成红外线检测部,所以不散热。通过将在红外线透过基板与半导体基板之间构成的空间设为真空,不会由于使入射于形成在半导体基板上的红外线检测部的红外线(热)对流而向空间侧散出,因此可进行更高灵敏度的检测。至于残留的辐射,通过在面对于半导体基板的红外线检测部的面上设置由金属等所形成的红外线反射膜,可进行更高灵敏度的检测。
上述红外线传感器的制造方法,其特征在于,具备在成为半导体基板上的膜的薄膜上形成红外线检测部的工序;通过在形成有前述红外线检测部的前述薄膜的下侧形成中空部而形成膜结构的工序;在前述半导体基板与由硅等所构成的红外线透过基板之间、在前述半导体基板或前述红外线透过基板的至少一方部分性形成黏着层以赋予空间之后、经由此黏着层而在前述半导体基板上贴合前述红外线透过基板的工序;及从与前述半导体基板的前述红外线透过基板相反侧、在前述半导体基板上形成贯通孔的工序;前述贯通孔设置在面对于前述黏着层的位置。
根据此制造方法,通过由黏着层的支撑而抑制形成贯通孔时的贯通孔等的破损·劣化,可制造特性优异的上述红外线传感器。
此外,优选,当形成多个的红外线传感器时,在形成贯通孔之后,在红外线传感器间的切割线条上切断,分离成各个的红外线传感器。此时,半导体基板和红外线透过基板的贴合及贯通孔的形成结束,故通过由该切割而分离各个的红外线传感器,完成接近最终出货形态的制品。因此,根据此制造方法,将以低成本改善生产性。
发明的效果根据本发明的红外线传感器及其制造方法,可以提高其特性,也可以进一步以低成本提高生产性。


图1为实施方式的红外线传感器的侧面图。
图2为实施方式的红外线传感器的正面图(从红外线传感器中去除红外线透过基板的平面图)。
图3为红外线传感器的底面4为图2中的红外线传感器的IV-IV箭头剖面图。
图5为贯通孔P的周围部分的放大图。
图6为用于说明红外线检测部的制造工序的图。
图7为用于说明红外线透过基板FL的安装工序的图。
图8为用于说明贯通孔P的形成工序的图。
图9为用于说明凸块的安装工序的图。
图10为具有对基板背面略垂直地蚀刻而形成的贯通孔P的红外线传感器的剖面图。
图11为从红外线传感器中省略红外线透过基板FL而表示的另一实施方式相关的红外线传感器的平面图。
图12为图11所示的红外线传感器的XII-XII箭头剖面图。
图13为具备多个红外线检测部4、6的红外线传感器的剖面图。
图14为将分解部件排列而表示此实施方式的红外线传感器的红外线传感器的分解斜视图。
符号的说明1半导体基板2中空部分3薄膜4多晶硅膜5绝缘膜6铝膜7钝化(passivation)膜8红外线吸收膜9绝缘膜10端子11温接点
12冷接点13蚀刻孔AD黏着层B凸块CE接触电极CH接触孔DL上部空间FL红外线透过基板IRP红外线检测部P贯通孔Pi绝缘膜SP内部空间STP弯曲防止壁具体实施方式
以下参照附图,对本发明的实施方式进行说明。其中,对相同要素标记相同符号,省略重复的说明。此外,各构造要素的尺寸比例,特别各层的厚度等,为了强调说明上的便利也有与现实相异的情况。
图1是实施方式的红外线传感器的侧面图。图2为从红外线传感器除去红外线透过基板的平面图。图3为红外线传感器的底面图。图4为图2中的红外线传感器的IV-IV箭头剖面图。此外,图14为将分解部件排列而表示此实施方式的红外线传感器的红外线传感器的分解斜视图。
膜结构的支撑部件具有具备着具有中空部分2的薄板部的半导体基板1,以及支撑·加强薄板部的薄膜(热绝缘膜)3。另外,半导体基板1由硅基板所构成。红外线传感器的背侧以半导体基板1进行封闭,在表面的钝化膜7的四处具有蚀刻孔13。即,中空部分2形成于薄膜3的下部。此红外线传感器中,背侧由于半导体基板1而成为封闭的结构,故在导线框或电路基板等的支撑部件上容易进行芯片焊接(die bonding),且机械性强度提高。
另外,薄膜3也可为以是由SiN单层、SiO2单层或包含SiN、SiO2、PSG、BPSG的任一种的多层膜所构成的,膜厚为0.1~5μm。
在薄膜3上,经由已掺杂1017~1020cm-3的n型或p型杂质的多晶硅膜4和成为绝缘膜的SiO2膜5而层叠有铝膜6。且,多晶硅膜4与铝膜6通过SiO2膜5的开口孔部连接而形成热电偶。
薄膜3及热电偶的露出表面以SiN所构成的钝化膜7进行覆盖,而在中空部分2上部的钝化膜7上形成红外线吸收膜8。另外,在多晶硅膜4与铝膜6之间,除了成为它们的接触点的开口孔部,经由SiO2膜5,在铝膜6上存在有钝化膜7,但是在图14中为了使构造明确化,故省略记载SiO2膜5与钝化膜7。
红外线吸收膜8在感热型红外线传感器中,用于作为热能捕捉红外线而设置。
此外,也可采用PSG、BPSG、SiN等的单层或由这些绝缘膜等所形成的层叠膜取代SiO2膜5,且钝化膜7也可为SiO2、PSG、BPSG或聚酰亚胺膜等单层或由它们所形成的层叠绝缘膜。此外,对于红外线吸收膜8使用黑化树脂,此黑化树脂也可采用混合有碳填充物(CarbonFiller)等的黑色填充物的树脂(环氧类、聚硅酮类、丙烯酸类、聚氨酯类、聚酰亚胺类等)或黑色光敏抗蚀剂等。
如图2所示,多晶硅膜4与铝膜6的长边的层叠构造,形成为从半导体基板1外缘上部、横跨中央的中空部分2上部而延伸。此外,中空部分2的形状为矩形(正方形或长方形),各层叠构造沿着垂直于中空部分2的四边的四个方向延伸。
在中空部分2上层叠多晶硅膜4与铝膜6,铝膜6的宽度形成为窄于多晶硅膜4的宽度。且,在形成红外线吸收膜8的区域的SiO2膜5的开口孔部中,连接着层叠的多晶硅膜4与铝膜6,形成温接点11。此外,在半导体基板1上部的SiO2膜5的开口孔部中,连接着相邻的多晶硅膜4与铝膜6,形成冷接点12。这些热电偶串联连接,通过端子10取出塞贝克效应所产生的热电动势。
此层叠构造因热电偶而当作热电型的红外线检测部(热电堆)4、6而发挥作用。即,在半导体基板1上形成有红外线检测部。由硅基板所构成的红外线透过基板FL面对在于半导体基板1。红外线透过基板FL作为红外线透过滤光片而发挥作用。此外,可在红外线透过基板的单面或双面附加防止反射膜,由此可提高透过率,可形成仅让必要的波长通过的带通滤波器。
黏着层AD部分介于半导体基板(第1硅基板)1与红外线透过基板(第2硅基板)FL之间。黏着层AD在半导体基板1与红外线透过基板FL之间赋予空间。黏着层AD的厚度设定成高于红外线吸收膜8的上面,且有间隙介于红外线吸收膜8或红外线检测部和与红外线透过基板FL的半导体基板面对的面之间。
本例的黏着层AD由例如Pyrex(注册商标)玻璃等的与硅之间可阳极接合的层所构成。半导体基板(第1硅基板)1与红外线透过基板(第2硅基板)FL的至少一方和黏着层AD为阳极结合。面对于红外线透过基板FL的中空部分2的内侧表面也可构成凹部,这种情况,红外线透过基板FL的内侧表面周围构成凸部,此凸部与黏着层AD黏着。黏着层AD设在半导体基板1的外缘部,并构成矩形环状的框部。因此,黏着层AD介于半导体基板1的外缘部与红外线透过基板FL的外缘部之间,并将红外线传感器的内部空间密闭于外部气体之外。此内部空间优选设为真空状态。通过将红外线透过基板与半导体基板之间的内部空间设为真空,不会使入射到形成在半导体基板上的红外线检测部的红外线吸收膜上的红外线(热)通过对流而向空间侧散逸,故可进行更高灵敏度的检测。
黏着层AD,例如优选为由含有康宁公司的#7740等的碱金属的硼硅酸玻璃所构成。这是因为,此玻璃的热膨胀系数α为3.4×10-6,接近硅的热膨胀系数β(=3.6×10-6)。即,这种情况,由在制造工序中的热膨胀系数相异所产生的热应力被抑制到最小限度,在中空部分等的机械性强度较弱处,不易受到应力。
即,在本例中α/β=94.4%,但是优选α/β=90%以上110%以下。
黏着层AD的黏着,采用阳极接合装置,将半导体基板与黏着层AD阳极接合,但是阳极接合在400℃以下的低温下进行。在阳极接合时,虽在半导体基板1与红外线透过基板FL之间施加250~800V左右的电压,但是阳极接合时的温度为较低的温度,故也可抑制上述的热应力。通过在真空装置内进行阳极接合,可在真空状态下密闭红外线传感器的内部空间。
此外,若在氮或氙等的惰性气体环境中进行阳极接合时,可在填充有氮或氙、氪、氩等惰性气体的状态下密闭红外线传感器的内部空间。通过在红外线透过基板与半导体基板之间的内部空间填充氮或氙而进行密闭,防止红外线检测部、膜结构或红外线吸收膜接触氧,故可制成无劣化的红外线检测器。再者,通过减少氙或氪、氩等的热传导率,且例如以10~100mmHg的低压填充重量较重的气体,可使得不易产生对流,并可抑制从由对流引起的红外线检测部的热散逸,可进行更高灵敏度的检测。
另外,在真空密闭中,也可在半导体基板1与红外线透过基板FL之间的内部空间内设置吸气(getter)材料。由此,可将内部空间内的压力长时间保持为真空,并提高红外线传感器的稳定性。作为吸气材料,可采用以钡、钛及锆等为主成分的材料。
与黏着层AD共同使用红外线透过基板FL时,由于红外线传感器的机械性强度增高,故具有可将半导体基板1的厚度变薄的优点。即,在黏着红外线透过基板FL之后,将半导体基板1的背面进行机械性及化学性研磨而薄板化,可缩小贯通孔P的深度方向的纵横比(aspectratio)。在薄板化工序中,除了机械研磨以外,也可采用干蚀刻或湿蚀刻。此外,当进行背面侧的加工时,将背面侧朝上进行加工。
此薄板化所产生的纵横比的降低,是非常有用的,不但可缩短贯通孔P的形成时间,同时可在贯通孔P的内壁面上容易地形成优质的绝缘膜Pi。即,当在贯通孔P的内壁面上形成绝缘膜Pi时,贯通孔P的深度较浅时,将可通过等离子体CVD法或溅射法形成覆盖性好的优质的绝缘膜Pi。
换言之,通过采用黏着层AD与红外线透过基板FL,可良好地制造在贯通孔P的内壁面上形成的绝缘膜Pi,结果,可期望红外线传感器的特性的提高。以下,综合给出薄板化的优点。
·由于贯通孔P的深度变浅,故可使端子(电极垫片)10及接触电极CE微小化,并可以以狭窄间隔形成。
·由于可缩小端子10的面积,故可相对增大红外线检测部4、6的面积,并可提高检测灵敏度。
·形成贯通孔P时的蚀刻时间缩短。
·由于贯通孔P的深度变浅,故可提高绝缘膜Pi的覆盖性。
·由于绝缘膜Pi的覆盖性提高,故可降低凸块B与半导体基板1的短路发生率。
·由于贯通孔P的深度变浅,故形成接触电极CE时的光敏抗蚀剂的涂布变得容易,此外,在照相平版印刷工序中的贯通孔P的底部的曝光图案的模糊量也变少。
·由于贯通孔P内不必形成如所谓贯通配线般的长配线,故可提高成品率。
如上述,红外线检测部4、6将产生热电动势的不同种材料(铝、多晶硅)电串联连接。此串联连接电路的两端端子(垫片)10形成在半导体基板1的薄膜3上。另一方面,半导体基板1,在面对于黏着层AD的位置,具有用于从端子10取出红外线检测部的输出的贯通孔P。即,半导体基板1的外缘部、端子10、黏着层AD及红外线透过基板FL的外缘部位于贯通孔P的轴线上。
另外,端子10位于平面形状为矩形的半导体基板1上的2个角落部。在其余角落部设有虚拟端子10’,改善红外线传感器的安装稳定性。
贯通孔P具有角椎台形状,其中配置有接近球形的形状的凸块B。贯通孔P的直径,从半导体基板1的背面侧往表面侧变小,形成锥状。在本例子中,也可在一个贯通孔P中配置一个凸块B,也可仅将开口径的一方设定成比另一方长很多,贯通孔P形成沟槽,而在该沟槽配置多个凸块B。另外,开口直径的孔深度相对于贯通孔P的纵横比(孔深度/开口直径)优选为1以下。凸块B具有从半导体基板1的贯通孔P突出若干的部分,向电路基板的安装变得容易。
图5为贯通孔P的周边部分的放大图。
在贯通孔P的内面上形成着由SiO2所构成的绝缘膜Pi。凸块B邻接于绝缘膜Pi。此外,贯通孔P内的绝缘膜Pi连接于覆盖半导体基板1的背面的绝缘膜9。而凸块B经由设在薄膜3上的接触孔CH内的接触电极CE,而连接于端子10。
即,参照图2,其中一方凸块B经由一方端子10,顺序电连接铝膜6、多晶硅膜4、铝膜6、多晶硅膜4…,再经由多晶硅膜4、配线、另一方端子10,电连接于另一方凸块B。此外,在虚拟端子10’正下方也与端子10的周边部同样,也可设置如图3所示的虚拟用的凸块B’。
此外,绝缘膜Pi不限于SiO2,也可为PSG、BPSG、SiN、SiON、聚合物等的单层绝缘膜或者由这些所形成的层叠膜。
对上述红外线传感器的功能进行说明。
入射于此红外线传感器的红外线,透过由已实施防止反射膜涂布的硅基板所构成的红外线透过基板(红外线透过窗)FL,而入射于热电偶等的红外线检测部4、6。红外线检测部4、6将入射于此的红外线转换成电信号。
此电信号经由贯通孔P取出到外部。红外线检测部4、6配置在通过介于半导体基板1与红外线透过基板FL之间的黏着层AD所形成的空间内。因此,将改善对于红外线检测部4、6的温度变化的应对特性。
特别是,由于红外线检测部4、6形成在由形成在半导体基板1上的薄膜3所构成的膜结构上,在薄膜3的下部具有中空部分2,故对于红外线检测部4、6的温度变化的应对特性进一步改善。
如上述,贯通孔P设置在面对黏着层AD的位置。因此,即使在通过黏着层AD所划分的空间内外产生压力差,贯通孔P与其底部也将由黏着层AD支撑,而抑制贯通孔P及形成在此的绝缘膜Pi的劣化·破损,改善红外线传感器的特性、成品率及生产率。
此外,在上述红外线传感器中,由于通过层叠多晶硅膜4和铝膜6而形成,相对于1个热电偶的配置区域变窄,故可高密度配置热电偶。此外,介于SiO2膜5而层叠多晶硅膜4与铝膜6的热电堆图案,通过形成3层构造来提高机械性的支撑强度,由于其从位于中空部分2上部的薄膜3的上部跨过半导体基板1的外延部的上部而形成为台面形,故可提高薄膜3的机械性强度。
再者,由于在中空部分2上部的薄膜3的上部,由具有黏着力的材料所构成的单一块红外线吸收膜8,固定着薄膜3和热电堆图案的全部,由于中空部分2,故可由在中空部分2的上部的薄膜3来进一步改善成为薄壁的区域的机械性强度。此外,红外线吸收膜8,由于形成为完全覆盖热电堆图案的温接点11,故通过吸收红外线,可将由红外线吸收膜8所产生的热有效地传至温接点11。
此外,虽然铝膜6由于热传导率佳,所以将在温接点所取得的热传至半导体基板1而散逸,可能导致红外线传感器的灵敏度降低,但由于铝膜6在多晶硅膜4上介于SiO2膜5而层叠得薄且细,故与半导体基板1热绝缘,而不会降低红外线传感器的灵敏度。此外,SiO2膜5不仅具有多晶硅膜4与铝膜6的电绝缘得功能,且也具有由于不易将多晶硅膜4的热传导至铝膜6的热绝缘功能。
另外,入射在红外线吸收膜8的红外线,虽然由于以形成在红外线吸收膜8下的铝膜6进行反射,而可能导致红外线传感器的灵敏度降低,但由于铝膜6形成较为纤细,故可将反射降低为最小,由于已反射的红外线进一步被红外线吸收膜8吸收,故不会降低红外线传感器的灵敏度。
再者,第1实施方式并不局限于此。中空部分2的形状不但不限于矩形,且也可为圆形等,可按照其形状而形成热电堆图案。
其次,对上述红外线传感器的制造方法进行说明。
图6为用于说明红外线检测部的制造工序的图。
首先,准备由硅所形成的半导体基板1(第1硅基板)。在半导体基板1的表面上形成由多晶硅所构成的牺牲层。此牺牲层在后面的工序中去除而构成中空部分2的上部空间DL。即,在蚀刻牺牲层之前,在上部空间DL内填充牺牲层。
在此,中空部分2也可通过仅蚀刻牺牲层而形成,或也可沿着厚度方向进一步蚀刻本体(bulk)的半导体基板1而形成。根据上述意思,图6中的中空部分2以虚线表示半导体基板1侧。
形成牺牲层之后,将在半导体基板1的表面上形成由绝缘层所构成的薄膜3,并以薄膜3覆盖半导体基板1及牺牲层的露出表面。再者,上述牺牲层在半导体基板1的薄膜3侧,以与中空部分2大致相同的尺寸形成。接着,形成由多晶硅膜4、绝缘膜5及铝膜6所构成的热电堆图案及端子10之后,再形成钝化膜7。
然后,将薄膜3及钝化膜7开口而形成蚀刻孔13,并在热电堆图案上形成红外线吸收膜8(参照图2)。另外,红外线吸收膜8也可在后述的蚀刻后形成。
此外,在半导体基板(第1硅基板)1的背面,根据需要形成保护用的掩模。对于导入蚀刻孔13内的蚀刻液,例如采用将乙二胺、邻苯二酚与水的混合液加温后的刻蚀液。此外,半导体基板1为(100)基板并露出(100)面。将蚀刻液导入蚀刻孔13内时,蚀刻液从蚀刻孔13浸透于多晶硅的牺牲层,蚀刻此牺牲层的同时,或完全蚀刻后根据设计而开始半导体基板1的各向异性蚀刻。
由此,可形成具有中空部分2的膜结构。此外,蚀刻进行深度2~30μm左右。另外,为了形成膜结构,也可仅蚀刻多晶硅牺牲层。此时,将多晶硅牺牲层的厚度设为0.2μm~3μm。此外,在蚀刻中,除了前述蚀刻液以外,也可为肼(hydrazine)水溶液等,或者也可为采用XeF2等的干蚀刻。
图7为用于说明红外线透过基板FL的安装工序的图。
形成中空部分2后,也兼具机械性强度的增加而进行由硅所构成的红外线透过基板(第2硅基板)FL的安装。首先,在半导体基板(第1硅基板)1的外缘部上,形成由派莱克斯玻璃(Pyrex glass)所构成的黏着层AD。在黏着层AD上,重叠红外线透过基板(第2硅基板)FL,在真空中或氮气氛围中阳极接合黏着层AD与红外线透过基板(第2硅基板)FL。此外,黏着层AD的形成也可在前述蚀刻前进行。且,黏着层AD的形成也可在红外线透过基板(第2硅基板)FL侧形成。
然后,机械性及化学性研磨半导体基板(第1硅基板)1的背面侧,使半导体基板1薄板化。薄板化后的半导体基板1外缘部厚度为50~200μm左右。
图8为用于说明贯通孔P的形成工序的图。
接着,在半导体基板1的背面上形成耐蚀刻液的掩模9。在此,掩模9由SiN所构成。将掩模9的贯通孔预定形成区域开口后,在此开口内导入KOH水溶液等的蚀刻液,往内部方向蚀刻第1半导体基板1。
在此湿蚀刻中进行各向异性蚀刻,在蚀刻液到达薄膜(热绝缘膜)3的时点停止蚀刻,形成椎状的贯通孔P。此外,上述的掩模9根据必要而去除,之后也可在基板背面上形成新的绝缘膜9。
此外,蚀刻液,除了KOH水溶液以外,也可采用肼(hydrazine)、EDP(EthyleneDiamine Pyrocatechol)、TMAH(TetraMethyl AmmoniumHydroxide)等的碱性水溶液。另外,作为掩模材料,除了SiN外,也可采用SiO2等的耐碱性高的膜,其可通过CVD(Chemical VaporDeposition)法等形成。另外,本例的情况,即使蚀刻结束,由于介于黏着层AD而存在红外线透过基板(第2硅基板)FL,故不会有蚀刻结束时或结束后的膜破损,且可不降低成品率而进行各工序。
图9为用于说明凸块电极的安装工序的图。
接着,在贯通孔P的内壁面上以CVD法或溅射法形成由钝化膜所构成的绝缘层Pi。然后,在绝缘层Pi的底部及对应于此的薄膜3的区域形成开口(接触孔CH),并露出端子10的背面侧。在此端子10的露出面上,通过无电解电镀等形成接触电极(基底凸块金属(UnderBump Metal))CE。在贯通孔P内配置凸块B,并使其接触于接触电极CE。此外,凸块B的与接触电极CE相反侧的端部从半导体基板1的背面突出。
接触电极CE,除了无电解电镀之外,也可通过蒸镀、溅射等形成。接触电极CE的材质可为Ni、Au、Cr、Cu、Pt等的金属单层、合金或者它们的层叠膜。为了接触于接触电极CE,形成由焊料等所构成的凸块B,但在凸块B的形成中也可采用球形安装法或印刷法、电镀法、焊接法等。在球形安装法中,凸块形成部为凹状可防止位置偏离,此外,在印刷法中可通过用刮板(squeegee)往凹部直接埋设焊料而再回流形成锡球。
以晶圆状态进行上述工序,最后通过切割基板接合部完成芯片。即,在上述凸块配置工序之后,将介于黏着层AD而阳极接合的半导体基板或红外线透过基板FL上的区域,设定为芯片切割线并切断此切割线。
即,当形成多个红外线传感器时,在形成贯通孔P后,在红外线传感器间的切割线上切断时,即可分离为各个红外线传感器。此时,由于半导体基板1与红外线透过基板FL的贴合及贯通孔P的形成结束,故由该切割、通过分离成芯片尺寸的各红外线传感器,而完成接近最后出货形态的制品。因此,根据此制造方法,将可用低成本且高生产率地制造小型薄型的红外线传感器。
图10为表示具有相对于基板背面大致垂直地蚀刻而形成的贯通孔P的红外线传感器的剖面图。
此红外线传感器,除了贯通孔P的形状以外,与上述红外线传感器相同。当形成凸块B的贯通孔以干蚀刻进行制作时,其形成方法与碱性湿蚀刻大致相同,将蚀刻用的掩模9作为SiO2或抗蚀剂、铝等的金属层或它们的层叠膜,而采用应对性离子蚀刻(RIE)法,干蚀刻半导体基板1的贯通孔该处。
在硅与铝的端子10正下方的薄膜(绝缘层)3,选择性停止蚀刻。若采用使用高密度等离子体的ICP-RIE作为RIE,则可加快蚀刻速度并大致垂直地蚀刻。当采用抗蚀剂作为蚀刻掩模时,通过氧抛光等去除其抗蚀剂,并实施形成贯通孔后的工序。作为贯通孔P的平面形状也可为圆形。
图11从红外线传感器省略红外线透过基板FL而表示另一实施方式的红外线传感器的平面图。此平面图的标记按照图2。图12为图11所示的红外线传感器的XII-XII箭头剖面图。
此红外线传感器与在图2中所示的相比较,仅中空部分2的形状及该部分的制造方法相异,其它构造及制造方法皆相同。此外,在本例的情况,由于中空部分2在半导体基板1的背面侧开放,故省略蚀刻孔。
若说明中空部分2的形成方法,在未形成中空部分2的半导体基板1表面,形成薄膜3、热电堆图案、钝化膜7、红外线吸收膜8之后,在与形成有半导体基板1的薄膜3的相反侧的面(背面),形成由耐硅蚀刻液的SiN等所构成的掩模。且,将欲形成中空部分2的区域的该掩模开口,在保护半导体基板1的表面的同时进行蚀刻。
由此,从背面掩模的开口部开始蚀刻,到达耐蚀刻液的薄膜3时即停止蚀刻。对于蚀刻液,例如采用KOH水溶液等,而对于第1半导体基板1采用(100)基板时,即可进行各向异性蚀刻。通过此蚀刻,可形成具有图12所示的中空部分2的膜结构。此外,此背面蚀刻可与从第1实施方式中所说明的背面的贯通孔P的形成同时进行。
另外,在半导体基板1背面侧根据需要形成绝缘膜9。此外,为了根据需要而在半导体基板的背面所开放的中空部分2设置空间,也可以通过粘结基板等而进行阻塞。由此可防止膜的破损。
此外,上述中空部分2的形状不限于矩形,也可为圆形等,可配合其形状而形成热电堆图案。另外,当采用蚀刻孔时,其形状及位置将通过热电堆图案而变更。
图13为具备多个上述红外线检测部4、6的红外线传感器的剖面图。在此,为了明确说明,以符号IRP表示红外线检测部4、6,并省略记载详细结构。红外线传感器在半导体基板1与红外线透过基板FL之间具有内部空间SP。在此内部空间SP内设置着抑制红外线透过基板FL朝向红外线检测部IRP侧的弯曲的弯曲防止壁(间隔墙)STP。
当弯曲红外线透过基板FL时,有时其邻接于红外线检测部IRP,热连接红外线检测部IRP而降低灵敏度,或者破损。此弯曲防止壁STP是为了防止这种灵敏度降低和破损而设置,弯曲防止壁STP的从半导体基板1的高度高于红外线检测部IRP的高度,且红外线透过基板FL弯曲时,其邻接于弯曲防止壁STP,而抑制红外线透过基板FL的弯曲量。
红外线检测部IRP的数目为多个,而各红外线检测部IRP构成像素,且独立地输出信号,但是本例为了明确说明,仅表示2个取出输出用的凸块B。弯曲防止壁STP形成在下方无中空部分的薄膜3上,设置在红外线检测部IRP间。
虽然当红外线检测部IRP为多个时,传感器与红外线透过基板FL同时大型化,但由于弯曲防止壁STP设在红外线检测部IRP间,故可整体性抑制弯曲量。另外,弯曲防止壁STP的形成位置设定在邻接的中空区域2之间的区域。
以下将详细说明有关弯曲防止壁STP。
当制作1维或2维的红外线检测部阵列时,芯片尺寸增大。当该芯片尺寸较大时,若仅在芯片周围粘结半导体基板1与红外线透过基板FL,则内部空间SP的平面方向尺寸将增大。
因此,由于晶圆的弯翘或外力(例如接合晶圆或芯片化后的安装时),可能导致基板表面的红外线检测部IRP与红外线透过基板FL接触,而产生损坏元件部或者通过红外线透过基板FL的接触所产生的热的散逸所引起的灵敏度降低等的问题。
作为上述问题的解决方针,在每邻接的各像素间或某像素间隔的像素间设置弯曲防止壁STP。由此,缩小内部空间SP的平面方向的尺寸,并可防止由晶圆的弯翘或外力引起的红外线检测部IRP与红外线透过基板FL的接触。另外,弯曲防止壁STP,在倒装式接合等的安装时,可抑制由施加压力所导致的元件的损坏。
弯曲防止壁STP,在欲形成半导体基板1上的弯曲防止壁之处,以单层或层叠Al、Ti、Au、Ni、Ti、Cr、W、Si、Pt、Cu、SiN、SiO2、BPSG、PSG等的材料或这些化合物或合金,并以蒸镀或溅射、CVD等进行沉积,通过蚀刻或剥落(Lift off)等图案化而形成。
对于此形成也可采用电镀法。此外,对于此形成也可印刷玻璃粉、或树脂、焊料而使其硬化。再者,也可采用感光性的树脂。作为感光性的树脂的树脂主要成份例如有聚酰亚胺、丙烯酸酯、PMMA(聚甲基丙烯酸甲酯)、有机硅、环氧等。感光性树脂工序少且可以非常便宜的价格形成。
以上,如所说明的,上述红外线传感器的制造方法,具备在半导体基板1上形成由薄膜3所构成的膜结构的工序;在膜结构上形成红外线检测部IRP的工序;在半导体基板1与由硅所形成的红外线透过基板FL之间,在半导体基板1或红外线透过基板FL或两者基板上,部分地形成黏着层AD以赋予空间,然后,介于此黏着层AD而贴合半导体基板1与红外线透过基板FL的工序;以及,从半导体基板1的与红外线透过基板FL相反侧,在半导体基板1上形成贯通孔P的工序。
此外,贯通孔P设置在面对于黏着层AD的位置上。根据此制造方法,通过由黏着层AD所产生的支撑而抑制形成贯通孔时的贯通孔与其底部、绝缘层Pi等的破损·劣化,而可制造特性佳的上述红外线传感器。
此外,作为红外线检测部IRP,除了热电堆之外,也可采用测辐射热计(bolometer)、热敏电阻(thermistor)、热电元件、双金属(bimetal)元件、二极管、晶体振子、高莱探测器(Colay cell)。
目前为止的说明中虽采用硅基板作为红外线透过基板FL,但红外线透过基板FL除了硅基板之外,也可采用锗基板或红外线透过玻璃等的透过红外线的基板。
另外,作为黏着层AD的材料,也可采用低熔点玻璃、焊锡(solder)、金属(单体、合金)、树脂等,为了增加其黏着强度、可靠度,也可为单层或层叠。上述的黏着方法并不限于阳极接合,可以根据需要施加热、压力或超音波等来进行黏着。
此外,虽未图示但也可设置用于使黏着层AD与基板的密合优良的密合层。也可在红外线透过基板FL侧设置黏着层AD,然后进行黏着,也可设在两者上设置后进行黏着。再者,黏着层AD也可仅设在红外线透过基板FL侧。
此外,除了从红外线检测部将输入输出端子10直接连接于凸块电极的方式以外,也可将处理红外线检测部的输出信号的电路设置在半导体基板1上,制成连接此电路的输入输出端子与凸块电极的结构。另外,也可在半导体基板1上形成用来监控基板温度的热敏电阻器(thermistor)或二极管,并电连接此端子与凸块。
再者,为了防止从半导体基板侧入射的红外线的杂散光,也可在与半导体基板的红外线透过基板相反侧的面上,在无贯通孔的部分设置例如金属等的遮光膜。
另外,为了防止热从红外线检测部以辐射散逸到半导体基板侧,也可在面对于半导体基板的红外线检测部的面上设置由金属等所构成的红外线反射膜。由此,可也包含来自半导体基板本身的红外线而遮蔽从半导体基板侧入射的红外线。
产业上的可利用性本发明可运用于红外线传感器及其制造方法。
权利要求
1.一种红外线传感器,其特征在于,在红外线传感器中,具备形成有红外线检测部的半导体基板,面对于所述半导体基板的红外线透过基板,及部分介于所述半导体基板和所述红外线透过基板之间、并给这些基板间赋予空间的黏着层;所述半导体基板,在面对于所述黏着层的位置上,具有用于取出来自所述红外线检测部的电信号的贯通孔。
2.如权利要求1所述的红外线传感器,其特征在于,在所述空间内,设置有抑制所述红外线透过基板朝向所述红外线检测部弯曲的弯曲防止壁。
3.如权利要求2所述的红外线传感器,其特征在于,所述红外线检测部的数目为多个,所述弯曲防止壁设置于所述红外线检测部之间。
4.如权利要求1所述的红外线传感器,其特征在于,所述红外线检测部在形成在所述半导体基板上的膜结构上形成。
5.如权利要求1所述的红外线传感器,其特征在于,介于所述黏着层而在所述半导体基板与所述红外线透过基板之间存在的空间为真空。
6.一种红外线传感器的制造方法,其特征在于,在红外线传感器的制造方法中,具备在成为预定形成在半导体基板上的膜的一部分的薄膜上形成红外线检测部的工序;通过在形成有所述红外线检测部的所述薄膜的下侧形成中空部而形成膜结构的工序;在所述半导体基板与红外线透过基板之间,在所述半导体基板或所述红外线透过基板的至少一方上部分形成黏着层以赋予空间之后,介于该黏着层而在所述半导体基板上贴合所述红外线透过基板的工序;以及从所述半导体基板的与所述红外线透过基板相反侧,在所述半导体基板上形成贯通孔的工序;所述贯通孔设置在面对于所述黏着层的位置上。
7.如权利要求6所述的红外线传感器的制造方法,其特征在于,当形成多个红外线传感器时,在形成所述贯通孔之后,在所述红外线传感器间的切割线上切断,分离成各个红外线传感器。
全文摘要
本发明的红外线传感器的贯通孔P设置于面对于黏着层AD的位置上。即使在由黏着层AD所划分的空间的内外产生压力差,贯通孔P与其底部也由黏着层AD支撑,而可抑制贯通孔P与其底部及在其上形成的绝缘膜Pi的劣化·破损,改善红外线传感器的特性。
文档编号H01L35/34GK1914490SQ20058000385
公开日2007年2月14日 申请日期2005年2月25日 优先权日2004年2月26日
发明者柴山胜己 申请人:浜松光子学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1