具有用于气体注入和排出的两个相对袋的反应腔的制作方法

文档序号:7212584阅读:193来源:国知局
专利名称:具有用于气体注入和排出的两个相对袋的反应腔的制作方法
技术领域
本发明的多个实施方式总体上涉及一种批处理腔。
背景技术
通常由器件产量和拥有成本(COO)这两个相关且重要的因素测量衬底制造工艺的效率。由于这两个因素直接影响生产电子器件的成本,进而影响器件制造商在市场中的竞争力,因此这些因素是很重要的。虽然有许多因素影响COO,但是COO主要受每小时处理衬底的数量和处理材料的成本的影响。已引入批处理来减少COO,并且批处理非常有效。批处理腔通常很复杂,例如配备有加热系统、输气系统、排气系统和泵送系统。
图1和图2示出公知的批处理腔。参照图1,其示出在处理条件下的批处理腔100。在这种条件下,可以在由顶部104、侧壁105和底部106限定的工艺空间103中处理由衬底舟皿101支撑的一批衬底102。在底部106中形成的孔122提供用于将衬底舟皿插入工艺空间103或者从中除去的装置。密封板107设置为在工艺期间封闭孔122。
在每个侧壁105的外表面上安装加热构造110。每个加热构造110包含多个卤素灯119,这些卤素灯119通过侧壁105上安装的石英窗109向批处理腔100的工艺空间103中的衬底102提供能量。在工艺空间103中增加安装在侧壁105的内表面上防热板108,用以扩散从加热构造110发射的能量,从而使待提供至衬底102的热能均匀分布。包含卤素灯121阵列的多区加热构造111安装在顶部104上。卤素灯121通过石英窗113和防热板112向衬底舟皿101中的衬底102辐射能量。
为了避免多余沉积以及出于安全原因,通常由滚花通道116(图2中示出)控制侧壁105和顶部104的温度。当石英窗109很热并且工艺空间103在真空下时,如果石英窗109与受温度控制的侧壁105直接接触,则过度的应力可导致内爆。因此,在石英窗109与侧壁105之间设置由O环形垫片124(由诸如氟橡胶、硅橡胶或者cal-rez石墨纤维的合适材料制成)和合适的相同材料的条形垫片123以确保石英窗109与侧壁105不直接接触,从而防止内爆。通过绝缘片125和固定夹126将防热板108安装在侧壁105上。防热板108和绝缘片125由诸如石墨或者碳化硅的合适高温材料制成。固定夹126由诸如钛的合适高温材料制成。
可以使用不断流经滚花通道116的热交换流体对侧壁105中形成的滚花通道116进行温度控制。热交换流体可以是例如加热到约30℃至约300℃的全氟聚醚(例如,Galden液体)。热交换流体也可以是在约15℃至约95℃的期望温度下输送的冷却水。热交换流体还可以是诸如氩气或者氮气的温度受控的气体。
在1997年8月11日提交的发明名称为“Mini-batch Process Chamber(迷你批处理腔)”的专利申请No.6,352,593和在2002年8月9日提交的发明名称为“High Rate Deposition At Low Pressure In A Small Batch Reactor(在小批反应器中低压下的高速沉积)”、且美国专利公开号为No.2003/0049372 A1的美国专利申请No.10/216,079中进一步描述了加热构造110和多区加热构造111的细节,在此引入其全部内容作为参考。
现在参照图2,通过气体注入组件114提供将要用于衬底102上的沉积层的处理气体。注入组件114通过O环与侧壁105真空密封。排出组件115设置在注入组件114的相对侧。在这种结构中,不直接对注入组件和排出组件进行温度控制,并且易于冷凝和分解,这将向批处理腔中引入颗粒污染物。
公知的批处理腔的几个方面有待改进。第一,由于衬底是圆形,所以未有效利用方盒形腔中的工艺空间。因此,浪费处理气体,并且延长反应气体的驻留时间(一个气体分子从注入点到在腔的相对侧排出的平均时间)。第二,由于不对注入组件和排出组件进行温度控制,所以他们易于由于过高或者过低的温度导致的冷凝和分解。第三,加热系统很复杂,并且难于维修和清洗。第四,使用许多压力绝缘密封件增加了系统的复杂性并且易于泄漏。因此,需要一种提供改进并且简化的批处理腔的系统、方法和装置。

发明内容
本发明通常提供一种批处理腔,其具有石英腔、至少一加热块、连接到石英腔一侧的注入组件和连接到石英腔的相对侧的排出组件。
本发明的一个实施方式提供一种批处理腔,其具有石英腔、至少一加热块、连接到石英腔一侧的注入组件和连接到石英腔的相对侧的排出组件。注入组件包含加热器和冷却通道,从而可控制该注入组件的温度。
本发明的另一实施方式提供一种批处理腔,其具有石英腔、至少一加热块、连接到石英腔一侧的注入组件、连接到石英腔的相对侧的排出组件和围绕石英腔和至少一加热块的外腔。
本发明的另一实施方式提供一种批处理腔,其具有石英腔、至少一加热块、连接到石英腔一侧的注入组件、连接到石英腔的相对侧的排出组件和设置在石英腔外面的至少一温度传感器。


为了详细理解本发明的上述特征,通过参照在附图中示出的实施方式更详细地说明上述简要概括的本发明。但是,应注意附图仅示出本发明的典型实施方式,因此并不视为限制其范围,本发明可以允许其它等效的实施方式。
图1(现有技术)示出公知批处理腔的侧视截面图;图2(现有技术)示出图1中所示的公知批处理腔的俯视截面图;图3示出本发明的示例性批处理腔的分解图;图4示出本发明的示例性批处理腔的侧视截面图;图5示出图4的批处理腔的俯视截面图;图6示出本发明的另一实施方式的截面图;图7示出本发明的示例性批处理腔的侧视截面图;图8示出图7的批处理腔的俯视截面图;图9示出本发明的示例性批处理腔的侧视截面图;图10示出图9的批处理腔的俯视截面图;图11示出本发明的示例性批处理腔的俯视截面图;图12A示出图11的批处理腔的侧视截面图;图12B示出本发明的另一实施方式的侧视截面图;
图13A示出本发明的示例性批处理腔的俯视截面图;图13B示出图13A的批处理腔的分解图;图14示出图13A的批处理腔的侧视截面图;图15示出在批处理腔中使用的清洗气体提供组件的正视图;图16示出图15的清洗气体提供组件的侧视图;以及图17示出本发明的批处理腔的注入组件的实施方式。
具体实施例方式
本发明一般地涉及一种用于批处理半导体衬底的装置和方法。在本发明的一个方案中,提供一种具有石英腔的批处理腔,该石英腔设有注入袋和排出袋。下文参考加利福尼亚州圣克拉拉市的Applied Materials Inc.(应用材料公司)的FlexStarTM系统的修改示例性说明本发明。
图3示出本发明的示例性批处理腔的分解图。批处理室200通常包括用于容纳衬底舟皿214的石英腔201。石英腔201通常包括穹形腔体202、形成在腔体202上注入袋204相对侧的排出袋203以及邻近于腔体202的开口218形成的凸缘217。衬底舟皿214用于支撑一批衬底221,并经由开口218传送入/出石英腔201。凸缘217可以焊接在腔体202上以减少用于真空密封的O环。排出袋203和注入袋204可焊接而不是槽铣在腔体202上。在一个方案中,注入袋204和排出袋203是一端焊接在腔体202上而另一端开口的扁平石英管。注入袋204和排出袋203分别插接注入件205和排出件207。石英腔201通常由对于炉腔理想的(熔融)石英制成。一方面,石英是兼具高纯度和高温性质的经济材料。另一方面,石英能够耐宽温度梯度和高加热率。
通常由靠近开口218的支撑板210支撑石英腔201。O环密封件219用于在石英腔201与支撑板210之间真空密封。具有孔220的腔套支座209(chamberstack support)设置在支撑板210上。一个或者多个加热器块211通常设置在腔体202的周围,并且用于通过腔体202向石英腔201内的衬底221提供热能。在一个方案中,一个或者多个加热器块211可以具有多个垂直区。可在一个或者多个加热器块211的周围设置多个石英衬212以防止热能向外辐射。外腔213设置在石英腔201、一个或者多个加热器块211和石英衬212上方,并且放置在套支座209上,用于提供对加热器块211和石英衬212的真空密封。开口216可形成在外腔213的侧边上以用于穿过注入件205和排出件207。通常分别在注入袋204与外腔213之间以及排出袋203与外腔213之间分别设置热绝缘体206和208。由于热绝缘体206、208和石英衬212使外腔213与加热器块211和加热后的石英腔201绝热,所以外腔213可以在加热工艺期间保持“冷”。在一个方案中,外腔213由诸如铝或者不锈钢的金属制成。
在一个方案中,可独立于石英腔201对注入件205和/或207进行温度控制。例如,如图3中所示,加热器槽222和冷却通道223设置在注入件205中以分别用于加热和冷却注入件205。
图4和图5示出具有石英腔和温度受控的注入件和排出件的批处理腔的一个实施方式。图4是批处理腔300的侧视截面图,图5是沿图4中的方向5-5的批处理腔300的截面图。批处理腔300通常包括石英腔301,该石英腔301限定用于容纳在衬底舟皿中堆叠的一批衬底321的工艺空间337。通常在石英腔301的周围设置用于加热工艺空间337内的衬底321的一个或者多个加热器块311。通常在石英腔301和一个或者多个加热器块311上方设置外腔313。通常在外腔313与一个或者多个加热器块311之间设置用于使外腔313保持冷却的一个或者多个热绝缘体312。由石英支撑板310支撑石英腔301。外腔313与由石英支撑板310支撑的腔套支座309连接。
石英腔301通常包括在底部具有开口318的腔体302、在腔体302的一侧上形成的注入袋304、在腔体上与注入袋304相对的另一侧上形成的排出袋303以及邻近于腔体302的开口318形成的凸缘317。与现有技术的方盒形处理腔相比,具有与衬底舟皿314相似的柱形的腔体302减小工艺空间337。由于减小工艺空间不仅能够减少每批处理所需的处理气体,而且缩短停留时间,所以期望在批处理期间减小工艺空间。排出袋303和注入袋304可焊接在而不是槽铣在腔体302上。在一个方案中,注入袋204和排出袋203是一端焊接在腔体202上而另一端开口的扁平石英管。注入袋304和排出袋303分别插接温度受控的注入组件305和温度受控的排出组件307。凸缘317可焊接在腔体302上。凸缘317通常位于石英支撑板310上,以使开口318与形成在石英支撑板310上的孔339成一直线。凸缘317通常与石英支撑板310紧密接触。可以在凸缘317与石英支撑板310之间设置O环密封件319,以从由外腔313、腔套支座309、石英支撑板310和石英腔301限定的外部空间338密封工艺空间337。石英支撑板310还与装载区340连接,在该装载区可为衬底舟皿314进行加载或者卸载。衬底舟皿314可经由孔339和开口318在工艺空间337与装载区340之间垂直移动。
在2005年8月31日提交的发明名称为“Batch Deposition Tool andCompressed Boat(批沉积工具和压缩舟皿)”、代理案号为APPM/009848/FEP/LPCVD/AG的美国专利申请No.11/216,969中进一步说明了在批处理中使用的衬底舟皿的实例,在此引入其全部内容作为参考。在2005年9月30日提交的发明名称为“Batch Wafer Handing System(批晶片处理系统)”、代理案号为APPM/010010/FEP/LPCVD/AG的美国专利申请No.11/242,301中进一步说明了在批处理中使用的用于加载和卸载衬底舟皿的方法和装置的实施例,在此引入其全部内容作为参考。
参照图5,加热器块311通常包围在除注入袋304和排出袋303之外的石英腔301的外围。加热器块311通过石英腔301将衬底321加热到适当温度。为了在所有衬底321的整个区域上达到均匀和期望的工艺结果,所有衬底321上的每个点需要均匀受热。一些工艺需要在一批中的所有衬底321上的每个点达到上下相差1摄氏度的相同设置点温度。批处理腔300的结构提高批处理的温度均匀性。一方面,由于衬底321和腔体302都是圆形,所以衬底321的边缘与石英腔301的距离一致。另一方面,加热器块311具有多个可控区,从而可以调节各区之间的温度变化。在一个实施方式中,加热器块311由排列在多个垂直区中的电阻加热器构成。在一个方案中,加热器块311是陶瓷电阻加热器。在一个实施方式中,经由形成在外腔313上的开口可拆卸加热器块311。在2005年9月9日提交的发明名称为“Removable Heater(可拆卸加热器)”、代理案号为APPM/009826/FEP/LPCVD/AG的美国专利申请No.11/233,826中进一步说明了在批处理中使用的可拆卸加热器的实例,在此引入其全部内容作为参考。
参照图4,注入袋304可焊接在腔体302的一侧上以限定与工艺空间337连通的注入空间341。当衬底舟皿314处于工艺位置时,注入空间341通常覆盖衬底舟皿314的整个高度,以使设置在注入袋304中的注入组件305可以向衬底舟皿314中的每个衬底321提供水平流动的处理气体。在一个方案中,注入组件305具有用于安装在注入空间341中的突出的中央部342。通常在中央部342的周围形成用于容纳注入袋304的壁的凹部343。注入袋304的壁通常被注入组件305包围。热绝缘体306通常设置在注入组件305与外腔313上形成的注入开口316之间。在一个方案中,包括外腔313的内侧和石英腔301的外侧的外部空间338保持真空状态。由于在工艺期间工艺空间337和外部空间338通常保持真空状态,所以将外部空间338保持真空能够减小由石英腔301上的应力所产生的压力。O环密封件331可设置在外腔313与热绝缘体306之间以提供对外部空间338的真空密封。O环密封件330可设置在注入组件305与热绝缘体306之间以提供对注入空间341的真空密封。在注入袋304的外部设置隔离密封件329以防止工艺空间337和注入空间341中的工艺化学物质泄漏至外部空间338。在另一方案中,外部空间338可处于常压。
热绝缘体306具有两个用途。一方面,热绝缘体306使石英腔301和注入组件305与外腔313绝热,以避免由于加热后的石英腔301和注入组件305与“冷”外腔313的直接接触而由热应力导致损坏。另一方面,热绝缘体306使注入袋304和注入组件305与加热器块311绝热,从而可独立于石英腔301对注入组件305进行温度控制。
参照图5,水平铣出贯穿注入组件305的三个进气道326。这三个进气道326中的每个通道用于独立地向工艺空间337提供处理气体。每个进气道326与中央部342的一端附近形成的垂直通道324连接。垂直通道324还与多个均匀分布的水平孔325连接,并且在注入组件305的中央部342上形成垂直喷头(图4中未示出)。在工艺期间,处理气体首先从一个进气道326流进相应的垂直通道324。然后,处理气体通过多个水平孔325水平流进工艺空间337。一方面,进气道326在相应的水平通道324的中点附近与该水平通道324连接,从而缩短处理气体的流径的平均长度。另一方面,由于水平孔325远离进气道326设置,所以可以增大水平孔325的尺寸,从而使所有水平孔325中的气流接近相等。在一个实施方式中,可以根据批处理腔300中进行的工艺需要,在注入组件305中形成更多或者更少的进气道326。在另一实施方式中,由于可以从外腔313的外侧安装或者除去注入组件305,因此更换注入组件305以满足不同的需求。
尤其在批处理腔中进行沉积工艺时,控制批处理腔中的各种元件的温度很重要。如果注入组件的温度太低,则注入的气体可以凝结并且保留在注入组件的表面上,这样可产生颗粒并且影响腔工艺。如果注入组件的温度太高,则引发气相分解和/或表面分解,这可“阻塞”注入组件中的路径。理想地,批处理腔的注入组件加热至低于注入气体的分解温度并且高于气体的凝结温度的温度。注入组件的理想温度通常与工艺空间中的处理温度不同。例如,在原子层沉积期间,将正处理的衬底加热到600摄氏度,而注入组件的理想温度为约80摄氏度。因此,必须独立控制注入组件的温度。
参照图4,一个或者多个加热器328设置在邻近于进气道326的注入组件305的内侧。一个或者多个加热器328用于将注入组件305加热至设定温度,并且可由电阻加热器元件、热交换器等构成。在注入组件305中,在一个或者多个加热器328的外侧形成冷却通道327。一方面,冷却通道327进一步控制注入组件305的温度。另一方面,冷却通道327使注入组件305的外表面保持冷。在一个实施方式中,冷却通道327可以包括两个以一定角度轻微钻孔以在一端连通的两垂直通道。水平入口/出口323与每个冷却通道327连接,以使热交换流体可通过冷却通道327不断流动。热交换流体可以是例如加热到约30℃至约300℃的全氟聚醚(例如,Galden液体)。热交换流体也可以是在约15℃至约95℃的期望温度下输送的冷却水。热交换流体还可以是诸如氩气或者氮气的温度受控的气体。
参照图4,排出袋303可以焊接在腔体302的注入袋304相对侧上。排出袋303限定与工艺空间337连通的排出空间344。当衬底舟皿314处于工艺位置时,排出空间344通常覆盖衬底舟皿314的高度,以使处理气体可以通过设置在排出袋303中的排出组件307均匀排出工艺空间337。在一个方案中,排出组件307具有用于安装在排出空间344中的突出的中央部348。在中央部348的周围形成用于容纳排出袋304的壁的凹部349。排出袋303的壁被排出组件307包围。热绝缘体308设置在排出组件307与外腔313上形成的排出开口350之间。O环密封件345设置在外腔313与热绝缘体308之间以提供对外部空间338的真空密封。O环密封件346设置在排出组件307与热绝缘体308之间以提供对排出空间344的真空密封。在排出袋303的外部设置隔离密封件347以防止工艺空间337和排出空间344中的处理化学物质泄漏至外部空间338。
热绝缘体308具有两个用途。一方面,热绝缘体308使石英腔301和排出组件307与外腔313绝热,以避免由于加热后的石英腔301/排出组件307与451用于在工艺空间437和加热器空间438之间提供真空密封。一方面,加热器空间438可以保持在真空状态并且该加热器块411为真空兼容的加热器,诸如陶瓷电阻加热器。另一方面,加热器空间438可以保持在常压下并且该加热器块411为普通电阻加热器。在一实施方式中,加热器块411可以由几个可控的区域构成从而可以分区调整加热效果。在另一实施方式中,加热器块411可以从外腔413的侧面和/或顶部去除。在2005年9月9日递交的、美国专利申请号为11/233,826、代理案号为APPM/009826/FEP/LPCVD/AG、发明名称为“Removable Heater(可去除式加热器)”的美国专利申请中进一步描述了在批处理中使用的可去除式加热器的实施例,在此引入其内容作为参考。
O-环密封件槽用于将注入组件405密封连接到外腔413上。注入组件405具有延伸入工艺空间437中的突出的中央部442。注入组件405具有在突出的中央部442内形成的一个或者多个垂直进气管424。多个水平进气孔425与构成垂直喷头的垂直进气管424连接,该喷头用于向工艺空间437中提供一种或者多种处理气体。一方面,可以独立于工艺空间437对注入组件405进行温度控制。在注入组件405内部形成用于在其中循环冷却的热交换流体的冷却通道427。例如,该热交换流体可以是温度加热到约30℃到约300℃的全氟聚醚(例如Galden流体)。该热交换流体也可以是以介于约15℃到95℃之间所需温度传输的冷却水。该热交换流体还可以是温度受控的气体,诸如氩气和氮气。
O-环446用于将排出组件407密封连接到外腔413上。排出组件407具有延伸入工艺空间437中的突出的中央部448。排出组件407具有在突出的中央部448内形成的一垂直隔间432。多个水平槽连接至垂直隔间432,以从该工艺空间437中抽吸处理气体。一方面,可以独立于工艺空间437对排出组件407进行温度控制。在排出组件407内部形成用于在其中循环冷却热交换流体的冷却通道434。例如,该热交换流体可以是温度加热到约30℃到约300℃的全氟聚醚(例如Galden流体)。该热交换流体也可以是以介于约15℃到95℃之间所需温度传输的冷却水。该热交换流体还可以是温度受控的气体,诸如氩气和氮气。
图7和8所示为具有带有用于排气和注入的相对的袋的石英腔的批处理腔的另一实施方式。在该实施方式中,该排出袋具有底部,该底部通过“冷”外腔313的直接接触而由热应力导致损坏。另一方面,热绝缘体308使排出袋306和排出组件307与加热器块311绝热,从而可独立于石英腔301而控制排出组件307的温度。
参照图5,在中央部附近贯穿排出组件307水平形成排出口333。排出口333与在突出的中央部348中形成的垂直隔室332连通。垂直隔室332还与连通至工艺空间337的多个水平槽336连接。当抽吸工艺空间337时,处理气体首先从工艺空间337通过多个水平槽336流进垂直隔室332。然后,处理气体经由排出口333流进排出系统。在一个方案中,可以根据特定水平槽336与排出口333之间的距离改变水平槽336的尺寸,以在从上至下贯穿整个衬底舟皿314提供均匀的抽吸。
尤其在批处理腔中进行沉积工艺时,控制批处理腔中的各种元件的温度很重要。一方面,需要保持排出组件的温度低于处理腔的温度,从而在排出组件中不发生沉积反应。另一方面,需要加热排出组件以使通过排出组件的处理气体不凝结并且不保留在表面上产生颗粒污染物。因此,必须独立于工艺空间加热排出组件。
参照图4,在排出组件307中形成用于控制排出组件307的温度的冷却通道334。水平入口/出口335与冷却通道334连接,以使热交换流体可通过冷却通道334不断流动。热交换流体可以是例如加热到约30℃至约300℃的全氟聚醚(例如,Galden液体)。热交换流体也可以是在约15℃至约95℃的期望温度下输送的冷却水。热交换流体还可以是诸如氩气或者氮气的温度受控的气体。
图6示出本发明的另一实施方式的俯视截面图。批处理腔400通常包括外腔413,该外腔具有两个彼此相对形成的开口416和450。开口416用于插接注入组件405,而开口450用于插接排出组件407。外腔限定用于处理其中的一批衬底421的工艺空间437。通常在外腔413中设置两个石英容器401。每个石英容器401具有用于紧抱衬底421的一部分外围的曲面402。在曲面402的相对侧形成开口452,在开口452的周围可形成凸缘403。石英容器401从开口452的内侧与外腔413密封连接,以使得石英容器401从工艺空间437中分出加热器空间438。在加热器空间438的内部设置加热器块411使得衬底421可以通过石英容器401的曲面421由加热器块411进行加热。O-环密封件消除所需的排出组件和多个O-环密封件降低了批处理腔的复杂性。图7为批处理腔500的侧视截面图而图8为沿图7的8-8方向提取的批处理腔500的截面图。该批处理腔500通常包括限定工艺空间537的石英腔501以容纳层叠在衬底舟皿514中的一批衬底521。通常围绕石英腔501设置一个或者多个加热器块511,用于加热工艺空间537内的衬底521。在石英腔501以及一个或者多个加热器块511的上方设置外腔513。一个或者多个热绝缘体512设置在外腔513和一个或者多个加热器块511之间并且保持外腔513处于冷却状态。通过石英支撑板510支撑石英腔501。外腔513与通过石英支撑板510支撑的腔套支架509连接。
石英腔501通常包括具有底部开口518的腔体502、形成在腔体502一侧的注入袋504、形成在腔体502上位于注入袋504对面的排出袋503,以及与底部开口518相邻形成的凸缘517。排出袋503和注入袋504焊接而不是槽铣在腔体502上。注入袋504具有一端焊接在腔体502上而另一端开口的扁平石英管形状。排出袋503具一侧焊接在腔体502上的部分管状。排出袋503具有底部口551并在底部打开。在腔体502和排出袋503之间设置排气挡板548,其用于限制在工艺空间537和排出袋503的排气空间532之间的流体流通。围绕底部开口518和底部口551焊接凸缘517,该凸缘设置为帮助对腔体502和排出袋503的真空密封。凸缘517通常与具有孔550和539的石英支撑板510紧密接触。底部开口518对准孔539并且底部口551对准孔550。在凸缘517和石英支撑板510之间设置O-环密封件519从而从由外腔513、腔套支架509、石英支撑板510和石英腔501限定的外部空间538密封工艺空间537。围绕底部口551设置O-环552从而密封排气空间532和外部空间538。石英支撑板510还与装载区540连接,在装载区加载或者卸载衬底舟皿514。该衬底舟皿514在工艺空间537和装载区540之间通过孔539和底部开口518垂直传输。
参照图8,加热器块511包围在石英腔501的外围除排出袋503和注入袋504附近的区域之外的部分。通过通过石英腔501由加热器块511将衬底521加热到适当温度。一方面,由于衬底521和腔体502为圆形,因此衬底边缘514和石英腔501之间具有均匀间距。另一方面,加热器块511可以具有多个可控的区域使得可以调整区域之间的温度变化。在一实施方式中,加热器块511可以具有部分围绕在石英腔501的曲面。
参照图7,焊接在腔体502一侧的注入袋504限定与工艺空间537连通的注入空间541。当衬底舟皿514位于工艺位置时,该注入空间541通常覆盖该衬底舟皿514的整个高度,从而使得设置在注入袋504的注入组件505可以向位于衬底舟皿514中的每个衬底521提供水平工艺气流。一方面,具有突出的中央部542的注入组件505安装在注入空间541中。通常围绕中央部542形成用于保持注入袋504的壁的凹部543。通常由注入组件505围绕注入袋504的壁。在外腔513上形成注入开口516从而为注入组件505提供通路。围绕注入开口516形成向里延伸的边缘506,其用于保护注入组件505不受到加热器块511加热。一方面,通常包括外腔513内部和石英腔501外部的外部空间538保持在真空状态。由于在工艺期间,工艺空间537和注入空间541通常保持在真空状态,因此保持外部空间538真空状态可以减少石英腔501上应力产生的压力。在注入组件505和外腔513之间设置O-环密封件530从而提供对注入空间541的真空密封。通常在注入袋504的外部设置隔离密封件从而防止工艺空间537和注入空间541中的工艺化学物质泄漏到外部空间538中。另一方面,外部空间538可以保持在常压下。
参照图8,水平铣出贯穿注入组件505的三个进气道526。这三个进气道526中的每个通道用于独立地向工艺空间537中提供处理气体。每个进气道526均与形成在中央部542的一端附近的垂直通道524连接。垂直通道524还与多个均匀分布的水平孔525连接,并且在注入组件505的中央部上形成垂直喷头(如图7所示)。在工艺期间,处理气体首先从多个进气道526中之一流入相应的垂直通道524。然后,处理气体通过多个水平孔525水平流入工艺空间537。在一实施方式中,根据在批处理腔500中进行的工艺的需要,在注入组件505中形成更多或更少的进气道526。在另一实施方式中,由于可以从外腔513的外侧安装或者去除注入组件505,因此更换注入组件505以满足不同的需求。
参照图7,一个或者多个加热器528设置在邻近进气道526的注入组件505内侧。一个或者多个加热器528用于将注入组件505加热到设定温度并且可由电阻加热器元件、热交换器等构成。在注入组件505中,在一个或者多个加热器528的外侧形成冷却通道527。一方面,该冷却通道527进一步控制注入组件505的温度。另一方面,冷却通道527使注入组件505的外表面保持冷却。在一个实施方式中,冷却通道527可以包括两个以一角度轻微钻孔以在一端连通的两垂直通道。水平入口/出口523与各冷却通道527连接,以使热交换流体可以连续流过冷却通道527。例如,热交换流体可以是温度加热到约30℃到约300℃的全氟聚醚(例如Galden流体)。该热交换流体也可以是以在约15℃到95℃之间所需温度传输的冷却水。该热交换流体还可以是温度受控的气体,诸如氩气和氮气。
排气空间532通过排气挡板548和工艺空间537流体连通。一方面,可以通过形成在排气挡板548上的多个槽536使能该流体连通。该排气空间532经过位于排出袋503底部的单一排气端孔533与泵组件流体连通。因此在工艺空间537中的处理气体经过多个槽536流入排气空间532,然后向下进入排气端孔533。位于排气端孔533附近的槽536比远离排气端孔533的槽536具有更强的吸力。为了从顶到底产生均匀的吸力,可以变化多个槽536的尺寸,例如从底到顶逐渐增加槽536的尺寸。
图9和10所示为本发明的另一实施方式,图9为批处理腔600的侧视截面图。图10为批处理腔600的俯视截面图。参照图10,该批处理腔600通常包括由加热器611环绕的柱状外腔613。在外腔613的内部设置具有排出袋603和注入袋604的石英腔601。该石英腔601限定在工艺期间用于容纳一批衬底621的工艺空间637、排出袋603内部的排气空间632和注入袋604内部的注入空间641。一方面,加热器611可以环绕外腔613约280度,注入袋604附近的区域处于未环绕状态。
外腔613可以由注入铝、不锈钢、陶瓷、石英的耐高温材料构成。石英腔601由石英构成。参照图9,石英腔601和外腔613都在底部开口并且通过支撑板610支撑。所述加热器611也由支撑板610支撑。在靠近底部的石英腔601上焊接凸缘617以便于在石英腔601和支撑板610之间实现真空密封。一方面,凸缘617可以是具有三个分别向排气空间632、工艺空间637和注入空间641开放的孔651、618和660的板。开口650、639和616形成在支撑板610中并且分别与孔651、618和660对准。凸缘617与支撑板610紧密接触。在凸缘617和支撑板610之间形成分别围绕孔651、618和660的O-环652、619和656。该O-环652、619和656提供石英腔601中工艺空间637、排气空间632和注入空间641与位于外腔613内部且石英腔601外部的外部空间638之间提供真空密封。一方面,外部空间638保持在真空状态以在工艺期间降低施加在石英腔601上的应力。
在注入空间641中设置配置用于提供处理气体的注入组件605。一方面,可以通过开口616和孔660插入以及去除注入组件605。可以在支撑板和注入组件605之间使用O-环657以密封开口616和孔660。在注入组件605的内部形成垂直通道624并且其用于从底部流入处理气体。为了在工艺空间637中从上到下均匀分布气体,在垂直通道624中钻孔形成多个均匀分布构成垂直喷头的水平孔625。一方面,在注入组件605中形成多个垂直通道以独立提供处理气体。参照图10,由于加热器611没有直接环绕注入组件605,因此该注入组件605可以进行独立温度控制。一方面,可以在注入组件605中形成提供用于控制注入组件605温度的垂直冷却通道627。
参照图9,排气空间632通过设置在排气空间632中的排气挡板648与工艺空间637实现流体连通。一方面,可以通过形成在排气挡板648上的多个槽636使能该流体连通。排气空间632经过设置在排气空间底部附近的开口650与泵组件流体连通。因此,工艺空间637中的处理气体经过多个槽636流入排气空间632,然后向下进入排气口659。位于排气口659附近的槽636比远离排气口659的槽636具有更强的吸力。为了从顶到底产生均匀的吸力,可以改变多个槽636的尺寸,例如从底到顶逐渐增加槽636的尺寸。
批处理腔600优点主要体现在以下几个方面。柱形容器腔601和613是有效容积方式。加热器611设置在腔601和613外部便于维护。注入组件605可以进行许多工艺都需要的独立温度控制。将排气口659和注入组件605安装在底部,从而减小了O-环密封件和维护的复杂性。
图11和12A所示为本发明的另一实施方式。图12A为批处理腔700的侧视截面图而图11为沿图12A的11-11方向提取的批处理腔600的俯视截面图。参照图11,批处理腔700包括由加热器700围绕的石英腔701。在石英腔701的内部设置内衬容器713。该内衬容器713设计为限定用于在工艺期间容纳一批衬底721的工艺空间737。石英腔701和内衬容器713限定外部空间738。在外部空间738中设置排出组件707并同时在外部空间738中设置位于排出组件707对面的注入组件705。在内衬容器713上分别在排出组件707和注入组件705附近形成两个窄开口750和716,所述两个窄开口750和716便于排出组件707和注入组件705与工艺空间737流体连通。一方面,加热器711可以环绕石英腔701约280度,注入组件705附近的区域处于未环绕状态从而可以独立控制注入袋705的温度。
参照图12A,石英腔701和内衬容器713均在底部开口并通过支撑板710支撑。一方面,加热器711还通过支撑板710支撑。内衬容器713为柱形并用于容纳衬底舟皿714。一方面,内衬容器713配置为将处理气体限制在工艺空间737内以降低所需的处理气体量并缩短气体分子停留时间,即气体分子从注入点到从腔中排出的平均时间。另一方面,内衬容器713可以用作扩散来自石英腔701中的热能的散热器,从而改善整个衬底721中热分布的均匀性。此外,内衬容器713可以防止在工艺期间在石英腔701上产生薄膜沉积。内衬容器713由诸如铝、不锈钢、陶瓷和石英的适用耐高温材料构成。
石英腔701具有焊接在靠近底部位置的凸缘717。该凸缘717配置为与支撑板710紧密接触。在凸缘717和支撑板710之间采用O-环密封以便于对石英腔701实现真空密封。
排出组件707具有顶端封闭并且在一侧形成多个槽736的管形形状。所述多个槽736与内衬容器713的开口750相对,从而使得工艺空间737与位于排出组件707内部的排气空间732流体连通。可以从形成在支撑板710上排气口759安装排出组件707并且采用O-环758密封排气口750。
注入组件705紧密安装在石英腔701和内衬容器713之间。注入组件705具有三个向外延伸并且设置在形成于石英腔701一侧的三个注入口704内的输入扩展端722。可以采用O-环密封件730密封注入口704和输入扩展端722之间的位置。一方面,通过将输入扩展端722从石英腔701内部插入注入口704中安装注入组件705。可以将注入口704焊接在石英腔701的侧壁上。一方面,为了便于维护可以将输入扩展端722设计的很短使得可以通过拆卸方式从腔室去除注入组件705。参照图11,在注入组件705内部形成垂直通道724并且该垂直通道724配置为与在输入扩展端722中间位置形成的水平通道726流体连通。在垂直通道724中钻孔形成多个均匀分布的水平孔725构成垂直喷头。该水平孔725朝向内衬容器713的开口716,从而可以在工艺空间737中从上到下均匀分布来自水平通道726的处理气体。一方面,可以在注入组件705中形成多个垂直通道724以独立供应多种处理气体。在注入组件705内部形成垂直冷却通道727,以提供控制注入组件705温度的装置。参照图12A,冷却通道727在顶部和底部与形成在输入扩展端722中的输入通道723连接。通过从位于中部的输入扩展端722提供处理气体,缩短了该处理气体的平均路径。
图12B所示为在类似于批处理腔室700的批处理腔室700A中应用的注入组件705A的另一实施方式。注入组件705A紧密连接在石英腔701A和内衬容器713A之间。注入组件705A具有向外延伸并且设置在石英腔701A上形成的注入口704中的输入扩展端722A。可以采用O-环密封件730A密封注入口704A和输入扩展端722A之间的位置。在注入组件705A内部形成垂直通道724A并且该垂直通道724A配置为与在输入扩展端722A中形成的水平通道726A流体连通。在垂直通道724A中钻孔形成多个均匀分布的水平孔725A以构成垂直喷头。水平孔725A设置为朝向内衬容器713的开口716A,从而可以在内衬容器713A中从上到下均匀分布来自水平通道726A的处理气体。在注入组件705A内部形成垂直冷却通道727A以提供控制注入组件705A温度的装置。冷却通道727A在底部开口。可以从在支撑板710A上形成的注入口760A安装注入组件705A并且可以采用O-环757A密封注入口760A。
图14-16所示为批处理腔的另一实施方式,其中通过设置在腔外的传感器监控该腔的温度。图14所示为批处理腔800的侧视截面图。图13A为沿图14的13A-13A方向提取的批处理腔800的俯视截面图。图13B为图13A的分解图。
参照图13A,批处理腔800包括由加热器811围绕的石英腔801。该石英腔801包括柱状腔体802,位于腔体802的一侧的排出袋803,和与该排出袋803相对的注入袋804。该腔体802限定用于在工艺期间容纳一批衬底821的工艺空间837。在腔体802和排出袋803之间设置排气挡板848。通过排出袋803和排气挡板848限定排气空间832。在排气空间832中设置与泵组件流体连通的排气导管859。一方面,在注入袋804中设置两个注入组件805。两个注入组件805并排设置并在二者之间留有敞开通道867。一方面,每个注入组件805配置为使其向工艺空间837独立提供处理气体。注入袋804具有多个内置多个传感器861的多个凹部863。传感器861用来通过经由位于注入组件805之间的敞开通道867“观察”透明石英腔801测量位于石英腔801内部的衬底821的温度。一方面,传感器861为通过分析由物体发出的辐射而不必任何物理接触确定物体温度的光学高温计。传感器861还与系统控制器870连接。一方面,该系统控制器870能够监控并分析正在处理的衬底821的温度。另一方面,该系统控制器870可以根据来自传感器861的测量值向加热器811发送控制信号。再一方面,该加热器811可以包括多个可控的区域从而该系统控制器870能够分区控制加热器811并局部调整加热特性。
参照图14,石英腔801底部开口并且具有围绕底部的凸缘817。凸缘817可以焊接在支撑板810上并配置为与支撑板810紧密接触。在一实施方式中,排出袋803和注入袋804均在石英腔801的底部开口。一方面,凸缘817可以是具有排气口851、中央开口818和两个注入开口860的石英板。为要插入注入组件805的排气导管859设置排气开口851。为衬底舟皿814设置中央开口818从而使得衬底821传输自或至工艺空间837。为要插入注入袋804的注入组件805设置注入开口860。因此,支撑板810具有与排气开口851、中央开口818和注入开口860分别对准的开口850、839和816。在支撑板810和凸缘817之间设置围绕开口850、839和816的O-环密封件852、819和856。在装配排气导管859时,在支撑板810的底部围绕开口850设置第二O-环858。该双重O-环密封件结构使得拆卸和维护排气导管859而同时不影响批处理腔800其它部分。可以围绕注入组件805设置同样的密封结构。为了对注入组件805进行真空密封,围绕开口816设置O-环857。
排气空间832通过在排气空间832底部附近的单个排气端孔833与泵组件流体连通。排气空间832经由排气挡板848与工艺空间837流体连通。为了在排气空间832中从上到下产生均匀吸力,可以将排气挡板848设置为从底到顶逐渐变窄的锥形阻板。
在注入组件805的内部形成垂直通道824并该通道824配置为与处理气体源流体连通。在垂直通道824中钻孔形成多个均匀分布的水平孔825,以构成垂直喷头。水平孔825朝向工艺空间837,从而在工艺空间837中从上到下均匀分布来自垂直通道824的处理气体。在注入组件805内部形成垂直冷却通道827,以提供对注入组件805进行温度控制的装置。一方面,可以在注入组件805的底部以小角度钻孔形成的两个垂直通道827使得他们在顶端相遇。因此热交换流体可以从其中之一冷却通道827流入并从另一冷却通道827流出。一方面,可以根据工艺需要,对两个注入组件805彼此独立地进行温度控制。
在某些工艺期间,尤其是沉积工艺中,在该工艺中采用的化学气体可能在石英腔801上沉积和/或凝结。在凹部863附件的沉积和凝结可能会模糊传感器的“视力”并且降低传感器861的准确性。参照图13B,在注入袋804的内部设置清洗组件862。清洗组件862向凹部863的内表面吹入清洗气体,使得靠近凹部863的区域不会暴露于在工艺中采用的化学气体中。因此,可以防止发生不希望的沉积和凝结。图15和16所示为清洗组件862的一个实施方式。图15为清洗组件862的主视图,图16为侧视图。用于接收来自清洗气源的清洗气体的进气管866与具有多个孔865的管叉864连接,其中所述多个孔865与图13A、13B和14所示的凹部863相对应。多个杯状物869附接在管叉864。在工艺期间,清洗气体从进气管866流入管叉864并经过多个孔865流出管叉864。参照图13B,杯状物869松散地覆盖相应的凹部863并配置该杯状物869朝向沿方向868流动的清洗气体。
图17所示为具有两个注入组件805A和用于温度传感器861A的检查窗863A的注入袋804A的另一实施方式。在注入袋804A的侧壁上焊接石英管862A。通过位于石英管862A内部的区域限定检查窗863A。每个石英管862A在靠近设置清洗气体供应管的位置均具有槽870A。清洗气体供应管864A具有朝向石英管862A的相应槽870A的多个孔865A。清洗气体可以通过孔865A和槽870A从清洗气体供应管864A流向检查窗863A。该结构通过省略图13B所示的凹部863简化了注入袋804A。
尽管上述内容针对本发明的实施方式,但是在不脱离本发明的范围以及通过如下权利要求所确定的范围的情况下可以针对本发明设计其他以及另外的实施方式。
权利要求
1.一种批处理腔,包括石英腔,用于处理在其内的一批衬底;至少一加热块,设置在石英腔外侧;注入组件,附接到石英腔;以及排气组件,在注入组件相对侧附接到石英容器。
2.根据权利要求1所述的批处理腔,其特征在于,还包括外腔,用于围绕所述石英腔和所述至少一加热块。
3.根据权利要求2所述的批处理腔,其特征在于,还包括至少一热绝缘体,设置在所述至少一加热块和所述外腔之间。
4.根据权利要求2所述的批处理腔,其特征在于,还包括注入热绝缘体,设置在所述注入组件和所述外腔之间。
5.根据权利要求2所述的批处理腔,其特征在于,还包括排气热绝缘体,设置在所述排出组件和所述外腔之间。
6.根据权利要求1所述的批处理腔,其特征在于,还包括内衬容器,设置在所述石英腔内,其中所述内衬容器用于容纳所述的一批衬底,其中所述注入组件和所述排出组件设置在所述石英腔和所述内衬容器之间。
7.根据权利要求6所述的批处理腔,其特征在于,所述石英腔包括注入口,用于向所述注入组件提供处理气体。
8.根据权利要求6所述的批处理腔,其特征在于,所述石英腔,包括注入口,用于向所述注入组件提供处理气体;以及两冷却口,用于向所述注入组件提供热交换流体;其中所述注入口位于靠近石英腔中部。
9.根据权利要求1所述的批处理腔,其特征在于,还包括柱形容器,设置在所述至少一加热块和所述石英腔之间。
10.根据权利要求1所述的批处理腔,其特征在于,所述石英腔包括连接到所述注入组件的注入袋和连接到所述排出组件的排出袋。
11.根据权利要求10所述的批处理腔,其特征在于,所述注入袋在所述石英腔一侧开口以及所述排出袋在所述石英腔的另一侧开口。
12.根据权利要求10所述的批处理腔,其特征在于,所述注入袋在所述石英腔一侧开口和所述排出袋在石英腔的底部开口。
13.根据权利要求10所述的批处理腔,其特征在于,所述排出袋在所述石英腔的底部开口并且在所述排出袋内设置有具有多个孔的排气块。
14.根据权利要求13所述的批处理腔,其特征在于,锥形的挡板设置在所述排气块上。
15.根据权利要求10所述的批处理腔,其特征在于,所述注入袋和所述排出袋都在所述石英腔的底部开口。
16.根据权利要求1所述的批处理腔,其特征在于,所述注入组件包括垂直的喷头,用于向所述石英腔分配至少一处理气体。
17.根据权利要求1所述的批处理腔,其特征在于,所述注入组件包括设置用于循环热交换流体的冷却通道。
18.根据权利要求17所述的批处理腔,其特征在于,所述注入组件还包括加热器。
19.根据权利要求17所述的批处理腔,其特征在于,所述注入组件通过注入热绝缘体与所述至少一加热块绝热。
20.根据权利要求1所述的批处理腔,其特征在于,所述排出组件包括用于循环热交换流体的冷却通道。
21.根据权利要求20所述的批处理腔,其特征在于,所述排出组件通过排气热绝缘体与所述至少一加热块绝热。
22.根据权利要求1所述的批处理腔,其特征在于,所述至少一加热块具有多个可控的区域。
23.根据权利要求1所述的批处理腔,其特征在于,所述至少一加热块具有每个可独立控制的多个垂直区域。
24.根据权利要求1所述的批处理腔,其特征在于,还包括与所述石英腔接触的石英支撑板。
25.根据权利要求24所述的批处理腔,其特征在于,所述石英腔包括与所述石英支撑板紧密接触的凸缘。
26.根据权利要求1所述的批处理腔,其特征在于,还包括至少一温度传感器,设置在所述石英腔外侧。
27.根据权利要求26所述的批处理腔,其特征在于,所述至少一温度传感器是光学高温计。
28.根据权利要求26所述的批处理腔,其特征在于,还包括设置在石英腔内侧的清洗组件,其中所述的清洗组件用于向相应于至少一温度传感器的所述石英腔的内侧表面吹清洗气体。
29.一种用于批处理腔的石英容器,包括具有敞开的底部的柱形主体;在所述柱形主体的一侧形成的注入袋;以及在与所述注入容器相对的另一侧形成的排出袋。
30.根据权利要求29所述的石英容器,其特征在于,所述注入袋焊接在一侧并对该侧敞开。
31.根据权利要求30所述的石英容器,其特征在于,所述排出袋焊接在一侧并对该侧敞开。
32.根据权利要求29所述的石英容器,其特征在于,所述注入袋和所述排出袋都对所述底部敞开。
33.根据权利要求32所述的石英容器,其特征在于,所述注入袋包含多个凹部。
34.根据权利要求29所述的石英容器,其特征在于,还包括排气块,设置在所述石英主体和所述排出袋之间。
35.根据权利要求29所述的石英容器,其特征在于,还包括焊接在靠近所述敞开的底部上的凸缘。
36.一种处理一批衬底的方法,所述方法包括通过具有第一受控温度的注入组件输送处理气体;以及向具有第二受控温度的工艺空间里注入所述处理气体。
37.根据权利要求36所述的方法,其特征在于,通过在所述注入组件里形成的冷却通道里流动热交换流体获得所述第一受控温度。
38.根据权利要求36所述的方法,其特征在于,通过设置在所述工艺空间外侧的至少一加热块获得所述第二受控温度。
39.根据权利要求36所述的方法,其特征在于,还包括通过具有第三受控温度的排出组件从所述工艺空间里抽出所述处理气体。
40.根据权利要求39所述的方法,其特征在于,通过在所述排出组件里形成的冷却通道里流动热交换流体获得所述的第二受控温度。
41.一种监控通过石英腔限定的工艺空间内的温度的方法,所述方法包括使用设置在石英腔外侧的至少一加热块加热所述工艺空间;以及使用设置在石英腔外侧的至少一高温计测量所述工艺空间内部的温度。
42.根据权利要求41所述的方法,其特征在于,还包括根据通过所述至少一高温计测得的所述温度调整所述至少一加热块。
43.根据权利要求41所述的方法,其特征在于,还包括朝向接近所述至少一高温计的所述石英腔的内侧表面流动清洗气体。
44.根据权利要求43所述的方法,其特征在于,还包括使用焊接在所述石英腔的所述内侧表面上的至少一石英杯状物引导所述清洗气体。
45.根据权利要求43所述的方法,其特征在于,还包括使用焊接在所述石英腔的所述内侧表面上的至少一个石英管引导所述清洗气体。
46.根据权利要求41所述的方法,其特征在于,还包括在靠近形成在所述石英腔的注入袋上的至少一凹部设置所述至少一高温计。
全文摘要
本发明通常提供一种批处理腔,其具有石英腔、至少一加热块、连接到石英腔一侧的注入组件和连接到石英腔的相对侧的排出组件。在一个实施方式中,对注入组件进行独立地温度控制。在另一实施方式中,至少一温度传感器设置在石英腔的外侧。
文档编号H01L21/205GK1949458SQ20061014116
公开日2007年4月18日 申请日期2006年10月13日 优先权日2005年10月13日
发明者约瑟夫·尤多沃斯科, 罗伯特·C·库克, 永·K·金, 亚历山大·塔姆, 梅特伊·马哈贾尼, 亚当·A·布雷洛夫, 史蒂夫·G·加内耶 申请人:应用材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1