全钒液流储能电池用碳纳米纤维修饰的电极材料及其应用的制作方法

文档序号:7161969阅读:223来源:国知局
专利名称:全钒液流储能电池用碳纳米纤维修饰的电极材料及其应用的制作方法
技术领域
本发明涉及电极材料及其应用,具体涉及一种全钥;液流储能电池用电极及其应用。
背景技术
全钒液流储能电池因其具有输出功率和容量相互独立、系统设计灵活、能量效率高、寿命长、可靠性高等优点,在规模储能方面具有广阔的发展前景,被认为是解决太阳能、风能等可再生能源发电系统随机性和间歇性非稳态特征的有效方法,在可再生能源发电和智能电网建设中有着重大需求。电极作为全钒液流储能电池的关键部件之一,是化学储能系统充、放电反应的场所,要求其具有优异的抗氧化性、导电性、电催化性能、稳定性和机械强度。当前,全钒液流储能电池用电极材料主要分为金属类电极材料和碳素类电极材料。金属类电极材料由于在全钒体系强酸性电解液中的长期运行稳定性普遍较差,已被证实不适合用作全钒液流储能电池电极材料;碳素类电极材料主要包括碳纸、碳布、石墨板、碳毡等,以其良好的稳定性与经济性体现出较大优势。然而,如果将碳素类材料直接用作电极材料,其电催化活性仍然不是太好,需要对其进行活化改性处理。目前已公开的专利文献中针对提高电极电催化活性的方法主要有(I)对电极材料如石墨毡、碳纸等进行金属化或氧化改性处理,在碳纤维表面修饰上金属离子或者含氧官能团,提高电极的电催化活性,减小电池的电化学极化,如专利CN101465417A和CN 101182678A中公开的对石墨毡进行电化学氧化的方法。但该种方法尽管提高了电极的电催化活性,却降低了电极的导电性和机械强度,造成电池性能下降。(2)在碳素类电极材料表面生成碳纳米管,通过增大电极的比表面积来提高电极的电催化活性。如CN 101651201A中公开的,在碳素基材表面直接形成碳纳米管层,能够在提高电极电催化活性的同时保持足够的机械强度。然而,碳纳米管表面为石墨烯片的基面,每个碳原子和相邻的3个碳原子相连形成六角形网络结构,故而碳原子多是饱和的,其能够提供的表面催化活性点位较少,因此,其对电极的电催化活性的提高幅度有限。

发明内容
本发明目的是为了解决全钒液流储能电池用电极材料电催化活性低的问题,提出一种全钒液流储能电池用电极材料,通过在碳素类基体材料上原位生长具有高电催化活性的碳纳米纤维,利用该种碳纳米纤维表面由石墨烯片的端面组成,而端面处的碳原子多是不饱和的,能够提供更多的表面催化活性点位,来提高电极的电催化活性。为了实现上述目的,本发明的技术方案为,一种全钒液流储能电池用碳纳米纤维修饰的电极材料,所述电极材料以碳素类材料作为基体,在该基体表面原位生长有碳纳米纤维,其中碳纳米纤维占电极的l_30wt%,优选5-15wt%,所述碳素类基体材料为碳租、石墨租、碳纸或碳布。
所述碳纳米纤维为板状或鱼骨状,也可以是管状,直径为20-500nm。所述电极通过如下过程制备而成,(I)将碳素类材料浸入O. 005-0. 5mol/L金属硝酸盐的水或乙醇、丙酮、乙二醇溶液中(优选的金属硝酸盐浓度为O. 005-0. 03mol/L),浸泡O. 5_8h,优选超声波分散O. 5_lh,然后取出晾干;(2)将担载有金属硝酸盐的碳素类基体材料在惰性气体的保护下升温至480-600°C,通入氢气,氢气/惰性气体的流量比为1/9-1/4,优选1/9-1/6,恒温保持l_6h,将碳素类基体材料上的金属氧化物还原成金属。继而关闭氢气,将材料在惰性气体的保护下升温至550_700°C。然后,通入含碳气体和氢气,含碳气体和氢气的流量比为2/1-6/1,恒温反应O. 25-2h后在惰性气体的保护下降至室温;(3)将原位生长了碳纳米纤维的碳素电极材料浸入5-15%质量分数的酸溶液中清洗O. 5-2h,除去材料中含有的金属催化剂,再用去离子水清洗O. 5-2h,干燥后得到碳纳米纤维修饰的碳素电极材料。所述金属硝酸盐为Ni (NO3) 2、Cu (NO3) 2、Fe (NO3)3中的一种或二种以上的混合物。所述惰性气体为氮气、氩气或氦气中的一种或二种以上的混合气体。所述含碳气体为乙烯、乙炔或一氧化碳中的一种或二种以上。。所述酸溶液为盐酸、硫酸、硝酸;优选盐酸溶液。本发明具有如下优点(I)采用本发明的电极`,由于该种碳纳米纤维采用板状或鱼骨状结构,相对于管状结构其表面由石墨烯片的端面组成,而端面处的碳原子则多是不饱和的,能够提供更多的表面催化活性点位,提高电极的电催化活性,从而减小了电池的电化学极化,提高包含该电极液流储能电池的能量效率和电压效率;(2)采用本发明的电极,由于碳素类基体材料中原位生长了高导电性的碳纳米纤维,构筑了更加完善的导电网络,因此可以提高电极的导电性,降低电池的欧姆内阻,提高液流储能电池的能量效率和电压效率;(3)采用本发明的电极,由于碳纳米纤维在碳素材料上是原位生长,所以具有很强的附着力,大大提高了碳素材料的机械强度,延长了电极的使用寿命。


图1是本发明实施例1中碳纳米纤维修饰碳纸的SEM照片;图2是本发明实施例1中碳纳米纤维的TEM照片;图3是本发明实施例1中碳纳米纤维修饰碳纸的循环伏安曲线图;图4是本发明实施例1中碳纳米纤维修饰碳纸与未修饰碳纸的充放电曲线图。
具体实施例下面通过具体实施例详述本发明。实施例1将碳纸浸入O. 01mol/L Ni (NO3)2的乙醇溶液中,超声波分散O. 5h后取出晾干。然后将其在氮气的保护下升温至480°C,通入氢气,使氢气/氮气的体积流量比为1/9,恒温保持2h。然后,关闭氢气,将材料在氮气保护下升温至600 V,再通入乙烯和氢气,乙烯和氢气的体积流量比为4/1,恒温反应O. 5h后在氮气保护下降至室温。将生长了碳纳米纤维的碳纸浸入质量浓度10%的稀盐酸中超声波清洗O. 5h,除去材料中含有的金属镍,再用去离子水清洗O. 5h,干燥后得到碳纳米纤维修饰的碳纸,碳纳米纤维占电极的IOwt%。所制备碳纳米纤维修饰碳纸的形貌如图1所示,碳纸中的碳纤维表面生长了一层直径为20-50nm左右的碳纳米纤维,与碳纸的比表面积(< lm2/g)相比大大提高,达到了22m2/g。如图2生长的碳纳米纤维的透射电镜照片显示本实施例中生成的碳纳米纤维为鱼骨状结构。为测试钒离子在碳纳米纤维修饰碳纸表面的电化学活性,对制备的碳纳米纤维修饰碳纸进行了循环伏安测试。以碳纳米纤维修饰碳纸作为工作电极,无孔石墨板作为对电极,饱和甘汞电极作为参比电极,采用的电化学测试仪器为上海辰华公司的CHI612型电化学工作站。配制浓度为 O.1MV (11)+0.1M V(III)+3M H2SO4 和 O.1M V (IV)+0.1M V (V) +3MH2SO4的电解液,对V(II)/V(III)和V(IV)/V(V)电对在碳纳米纤维修饰碳纸表面的电化学活性分别进行研究,扫描范围分别为-O. 75V -O. 3V和O. 5 1. 2V,扫描速率为10mV/S。本实施例中碳纳米纤维修饰碳纸电极的循环伏安曲线如图3所示,比较碳纳米纤维修饰碳纸和未修饰碳纸上V(II)/V(III)和V(IV)/V(V)的电化学氧化、还原峰位置和峰电流大小可知,碳纳米纤维修饰碳纸较未修饰碳纸具有明显提高的电催化活性及电化学可逆性。将本实施例制备的碳纳米纤维修饰碳纸作为电极组成全钒液流储能单电池进行充放电性能测试。电极面积为12cm2,初始正极电解液为1. 5M VO 2+的3M H2SO4溶液40ml,初始负极电解液为1. 5M V3+的3M H2SO4溶液40ml。电池充电中止电压为1. 65V,放电中止电压为O. 9V。该电池在40mA/cm2的电流密度下的充放电曲线如图4所示,从中可以看出,碳纳米纤维修饰碳纸作电极的电池较未修饰碳纸具有较低的初始充电电压和较高的初始放电电压,电流效率、电压效 率和能量效率分别达到了 91. 6%、92. 9%和85. 1%。实施例2将碳纸浸入O. 02mol/L Fe (NO3) 3的乙醇溶液中,超声波分散O. 5h后取出晾干。然后将其在氮气的保护下升温至480°C,通入氢气,使氢气/氮气的流量比为1/9,恒温保持2h。然后,关闭氢气,将材料在氮气保护下升温至580°C,再通入一氧化碳和氢气,一氧化碳/氢气的流量比为4/1,恒温反应O. 5h后在氮气保护下降至室温。将生长了碳纳米纤维的碳纸浸入10%的稀盐酸中超声波清洗O. 5h,除去材料中含有的金属铁,再用去离子水清洗O. 5h,干燥后得到板状碳纳米纤维修饰的碳纸,碳纳米纤维占电极的15wt% ο实施例3将碳毡浸入O. 05mol/L Ni (NO3)2的乙醇溶液中,超声波分散O. 5h后取出晾干。然后将其在氮气的保护下升温至480°C,通入氢气,使氢气/氮气的流量比为1/9,恒温保持2h。然后,关闭氢气,将材料在氮气保护下升温至600°C,通入乙烯,乙烯和氢气的流量比为4/1,恒温反应Ih后在氮气保护下降至室温。将生长了碳纳米纤维的碳毡浸入10%的稀盐酸中超声波清洗O. 5h,除去材料中含有的金属镍,再用去离子水清洗O. 5h,干燥后得到鱼骨状碳纳米纤维修饰的碳毡,碳纳米纤维占电极的20wt%。实施例4将碳布浸入O. 01mol/L Ni (NO3)2的乙醇溶液中,超声波分散O. 5h后取出晾干。然后将其在氮气的保护下升温至480°C,通入氢气,使氢气/氮气的流量比为1/9,恒温保持2h。然后,关闭氢气,将材料在氮气保护下升温至600°C,通入乙烯,乙烯和氢气的流量比为4/1,恒温反应Ih后在氮气保护下降至室温。将生长了碳纳米纤维的碳毡浸入10%的稀盐酸中超声波清洗O. 5h,除去材料中含有的金属镍,再用去离子水清洗O. 5h,干燥后得到鱼骨状碳纳米纤维修饰的碳布,碳纳米纤维占电极的1 5wt %。
权利要求
1.一种全钒液流储能电池用碳纳米纤维修饰的电极材料,其特征在于以碳素类材料作为基体,在该基体表面原位生长有碳纳米纤维,其中碳纳米纤维占电极材料的l-30wt% ; 所述碳素类材料为碳租、石墨租、碳纸或碳布。
2.根据权利要求1所述电极材料,其特征在于所述碳纳米纤维结构为板状或鱼骨状,直径为20-500nm。
3.根据权利要求1所述电极材料,其特征在于,所述电极通过如下过程制备而成, (1)将碳素类材料浸入O.005 O. 5mol/L金属硝酸盐的水、乙醇、丙酮或乙二醇溶液中O.5-8h,取出晾干得到担载有金属硝酸盐的碳素类基体材料; (2)将担载有金属硝酸盐的碳素类基体材料在流动的惰性气体保护下升温至480-600°C,通入氢气,氢气/惰性气体的体积流量比为1/9-1/4,恒温反应l_6h后关闭氢气; 然后在550-700°C下通入含碳气体和氢气,含碳气体和氢气的体积流量比为2/1-6/1,恒温反应O. 25-2h后关闭含碳气体和氢气;在惰性气体保护下降至室温; (3)将(2)得到的产物浸入5-15wt%的无机酸溶液中清洗O.5-2h,再用去离子水清洗O.5-2h,干燥后得到碳纳米纤维修饰的电极材料。
4.根据权利要求3所述电极材料,其特征在于所述金属硝酸盐为Ni(NO3)2、Cu(NO3)2、Fe (NO3) 3中的一种或二种以上的混合物。
5.根据权利要求3所述电极材料,其特征在于所述惰性气体为氮气、氩气或氦气中的一种或二种以上的混合气体。
6.根据权利要求3所述电极材料,其特征在于所述含碳气体为乙烯、乙炔或一氧化碳中的一种或二种以上。
7.根据权利要求3所述电极材料,其特征在于所述酸溶液为盐酸、硫酸或硝酸。
8.—种如权利要求1-7所述电极材料的应用,其特征在于所述电极材料应用于全钒液流储能电池中。
全文摘要
本发明涉及一种全钒液流储能电池用碳纳米纤维修饰的电极材料,以碳素类材料作为基体,在该基体表面原位生长有碳纳米纤维,其中碳纳米纤维占电极的1-30wt%,所述碳素类材料为碳毡、石墨毡、碳纸或碳布。本发明的电极材料电催化活性高、导电性高以及机械强度高,减小了电池的电化学极化,提高了包含该电极的液流储能电池的能量效率和电压效率。
文档编号H01M4/90GK103050713SQ20111031478
公开日2013年4月17日 申请日期2011年10月17日 优先权日2011年10月17日
发明者张华民, 刘涛, 刘宗浩 申请人:中国科学院大连化学物理研究所, 大连融科储能技术发展有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1