具有包括向电池提供氧气的氯酸钠分解反应器的燃料电池的电动交通工具的制作方法

文档序号:7007134阅读:306来源:国知局
专利名称:具有包括向电池提供氧气的氯酸钠分解反应器的燃料电池的电动交通工具的制作方法
技术领域
本发明涉及电动交通工具,具有至少一个发动机,燃料电池和供应系统,发动机能够作用于至少一个用于使交通工具向前行进的装置(轮、螺旋、涡轮、桨片、轨道链),供应系统用于基于用于提供氢气的机载系统和用于供应氧气的机载系统提供的氢气和氧气的燃料电池。
背景技术
车辆使用操作纯氧气和纯氢气的燃料电池,与由大气氧操作的燃料电池相比,显示了几方面的优势。这些优势特别包括以下与众不同的特征功率密度更高(紧),用于控制来自燃料电池的气体的系统大大简化,不必湿化进入燃料电池的气体,对于给定的功率成本较低,系统的输出更高,取消了空气压缩机且没被污染的气体通过空气引入到燃料电池 内。同样的,也存在一些主要缺点。首先,纯高压氧罐的机载重量比较高,且,第二,力口压气体的使用具有一定的风险。必须限制压力以免气体当压力超过200巴时变得相当危险。在压力下的绝热减少过程中,许多材料与氧气接触自燃。本发明提供各种技术手段来克服这些各类缺点。

发明内容
首先,本发明的第一目的在于提供生态且经济的交通工具。本发明的另一个目的在于提供给予高度安全性的交通工具。为了达到这目的,本发明首先提供了电动交通工具,包括·至少一个电动发动机,能够作用于至少一个使交通工具向前行进的装置;·燃料电池; 供应系统,用于基于由氢气供应系统提供的氢气的燃料电池;其特征在于电动交通工具包括在交通工具内的机载纯氧气供应系统,所述纯氧气供应系统包括氯酸钠罐,以流动形式与氯酸钠罐接触并与燃料电池连接以供应燃料电池氯酸钠分解后的纯氧气的用于氯酸钠分解的反应器,和用于氯酸钠分解产生的氯化钠的储存罐。使用用于氯酸钠(NaClO3)分解的反应器使得有可能将氯酸钠加载到交通工具(潜艇,飞机,汽车,摩托车等)内,以便原位产生用于电力生产燃料电池中的氧气,并从而避免有关其高压储存的缺点,这需要大量的预防措施从而在优化的安全条件下完成。本领域公知的是,氢气可以在高压下以气态形式储存。此储存方法可以很好地被控制并且不存在任何特殊困难。然而,根据本发明的交通工具的优选实施方案中,为避免高压氢气的储存,氢气供应系统包括在实质上低压下利用金属氢化物用来储存气体的罐,所述罐以流动形式与燃料电池接触以向后者供应氢气。因此,为了充分从本发明中受益,应该优选考虑制造氧气而不是电解水。
可观察到氯酸钠(NaClO3)的分解产物是氯化钠或盐(NaCl)和氧气。盐可选地再次用于重新产生氯酸钠。氧气是用来供至燃料电池。这是一种清洁燃料,提供高输出和高贡献以首先产生大量的能量,其次,对交通工具行驶的环境友好。根据一个有利的实施方案,用于NaClO3分解的反应器连接到热源上(用于产生分解反应)。 有利的是,每个NaClO3罐和每个氢气罐都包括可连接到用于填充罐的外源的填充管。用于供应纯氧气的系统有利地设计成能够提供大体上为固体形式的NaClO3到分解反应器中。根据有利的可选实施方案,通过机械供应系统,例如通过蜗杆或重力向反应器供应 NaClO3。


所有实施细节在下面说明中给出描述,通过图I至4辅助说明,其以非限制性实施例的目的单独呈现且在其中图I图示根据本发明的具有低压氢气罐的电力发动机型交通工具;图2显示与服务站相连接的相同交通工具图3显示用来运输NaClO3的工具的一个实施例,在此实施例中此工具为蜗杆;图4显示提供了中间储存罐的服务站的一个实施例。
具体实施例方式图I显示了交通工具10的一个实施例,在此实施例中,用燃料电池13供应其推进工具,并入车轮12的电发动机11。燃料电池基于氢气和氧气进行常规操作。电池因而可以产生连续电流,通过直流/直流转换器15输入到两个发动机中,供于所示交通工具的前轮中。直流/直流转换器可以调节由电池提供的电压为发动机所需电压。例如,对于提供90至150伏电压的电池,转换器升高电压,例如升高至电压值可介于250至300伏之间。根据其他示例性实施例,提供并入到交通工具后轮的发动机或者提供安装到已知类型的传输工具上的单个发动机。供至电池13的氢气有利地产自包括可以储存金属氢化物的实质上低压的氢气罐21的氢气供应系统20。这一有利的存储工具有可能优化气体量,例如,有可能在介于3至15巴之间的相对低压下储存大量氢气。包括金属氢化物的存储系统将在后面的说明书中更详细地描述。氢气管22可以将氢气罐21连接到燃料电池13上。提供给电池的纯氧气有利地来源于用于放置的NaClO3分解的反应器32,反应器32通过转移线35以流动形式与氯酸钠罐31接触。图3显示了可以从NaClO3罐31向反应器32供应氯酸钠的一种工具的实施例。在此实施例中,安置于两个元件之间的蜗杆50,被用于自氯酸钠罐31中提取粉末形式的氯酸盐,并运输至反应器32中。在另一个实施方案中(没有被显示),氯酸钠通过重力作用被运输到实质上安置在低于氯酸钠罐31位置的反应器32中。
机载氯酸钠通过安装在交通工具内的反应器分解,与对来自燃料电池的氧气的需求成正比。氯酸钠的分解由下述反应所控制NaClO3+ “热”一NaCl+302;由于此反应是吸热的,它消耗交通工具的机载能量;必要的能量从燃料电池所产生的电能中被提取;然而,此反应的输出非常高,并且仍然非常有利保持交通工具机载的整体能量平衡,由此提取自燃料电池的能量份额是为了供其与氧气保持适度。反应器32的反应所产生的氧气通过氧气管36被运输到燃料电池13中。根据本发明,氯化钠(NaCl)不像它所生产的那样分散,而是被交通工具机载储存在氯化钠储存罐37内,为了能将其在收集点通过排放管38排放并以任何适当的方式来回收此产品。为此, 回收线39将反应器32连接到氯化钠储存罐37上,以保证氯化钠的传输,例如它可能使用蜗杆系统(未在附图中显示)。当交通工具10连接服务站40时,如图2所示,氯酸钠罐31和氢气罐21 —方面被供应氯酸钠,另一方面被供应氢气。服务站40配备了用于连接交通工具填充管33和34的 两个位置41和42。服务站40还配备了用于连接到交通工具排放管38的连接点45。设计服务站40用来利用至少一个NaCl电解器来生产氯酸钠和氢气。另外必须为服务站供应水、盐和能量,以使得电解反应有可能产生。因此,在服务站,与水(H2O)混合的盐(NaCl)被电解来产生氯酸钠(NaClO3)和氢气(H2)。下面的化学反应对其进行描述NaCl+3H20+6e_ — NaC103+3H2可观察到这种反应产生气态氢和包括三个氧原子的固态氯酸钠。因此可以容易存储氯酸钠,而不必依赖于使用具有所有与此相关的限制的加压罐。进一步地,氯酸钠不具有危险。因此,它可以很容易地在交通工具内没有危险地运输。用于氢气的(氢气储存罐43)和/或用于NaClO3的(储存容器44)中间储罐是有利地在服务站内提供。服务站还包括用于产自于交通工具的并通过连接点45的氯化钠的第二存储容器450,与技术工具一起的所有工具都适合用来传输所述氯化钠(蜗杆或其他合适的工具)。这些容纳罐和储存容器可能使氢气和氯酸钠的产生完全自由且更加灵活,而没有实时供给的约束。对于服务站来说,对于氢气的储存限制并不如在交通工具上那样严重。因此,服务站的氢气容纳罐既可以是压力罐又可以是与交通工具的相似的具有氢化物的罐,但是优选的是具有相应于对几个交通工具充电的体积。已知的运输手段的类型,例如,如设于蜗杆的管道,使得可能从容纳罐传输NaClO3到待供应的交通工具。还应该强调的是,根据本发明所提供的方案,由于每个交通工具都生产氯化钠(NaCl)且由于每个服务站都消耗氯化钠,优选地,每个服务站具有用于收集机载存储在交通工具上的氯化钠的可用设备项目(未在附图中显示),以便在服务站内回收氯化钠以用于氯酸钠的生产(NaClO3)15为了以最佳方式存储氢,有利地在交通工具上提供包括金属氢化物的机载罐。利用这种罐,金属化合物作为氢气海绵使用。这存在一些具有在其晶格内吸收氢气的能力的金属和金属合金。在填充罐的过程中,扩散到金属中的分子氢气H2以原子H的形式储存。分子键被削弱,热量随之释放(放热反应)。因此有利的提供可以在填充过程中冷却罐的冷却工具。在图I的实施例中,氢气罐21设有散热片23,如果充电时间不是非常短,可使氢气罐21尽可能充分冷却。对于更有效的冷却,可以提供液体基冷却系统。
相反,为了排空罐,当原子氢离开氢化物时,需要能源供应以重新形成分子键。为了能够进行吸热反应,需要从环境吸收能量,从而使罐冷却。有利地,能源供应可能优化氢气排出。燃料电池的冷却水,一旦充入热能,使得有可能提供部分或全部所需的能量。最常用的金属氢化物为=FeTiH1.7、LaNi5H6,MgH2 和 Mg2NiH2。
储存在罐中的每单位体积的氢气重量无疑是这样具有金属氢化物罐构造的最大优势之一。以体积计的储存的氢的重量在60g/l至130g/l之间。相比之下,在复合材料(例如由树脂碳纤维)制成的罐内在350巴下压缩的氢气的密度为25g/l。对于液态氢,可获得71g/l的密度。这等于说,金属氢化物技术使得可以在小的体积内大量储存氢。
权利要求
1.电动交通工具(10),包括 至少一个电动发动机(11),能够作用于至少一个用于使交通工具向前行进的装置(12); 燃料电池(13); 供应系统,用于基于由氢气供应系统(20)提供的氢气的燃料电池; 其特征在于电动交通工具包括在交通工具内的机载纯氧气供应系统(30 ),所述纯氧气供应系统(30)包括氯酸钠罐(31),以流动形式与氯酸钠罐(31)接触的用于NaClO3并与燃料电池(13)连接以供应燃料电池(13) NaClO3分解后的纯氧气的分解反应器(32),和用于 氯酸钠分解产生的氯化钠的储存罐(37)。
2.根据权利要求I所述的电动交通工具,其中氢气供应系统(20)包括在实质上低压下使用金属氢化物用于储存气体的氢气罐(21),所述氢气罐以流动形式与燃料电池(13)接触为后者提供氢气。
3.根据权利要求I或2任一项所述的电动交通工具,其中用于NaClO3分解的反应器(32)连接到热源上。
4.根据权利要求I至3任一项所述的电动交通工具,其中每个NaClO3罐(31)和每个氢气罐(21)都具有可连接到用于填充罐的外源(40 )的填充管(33,34)。
5.根据权利要求I至4任一项所述的电动交通工具,其中用于供应纯氧气的系统(30)设计为能够提供大体是固体形式的NaClO3到分解反应器(32)中。
6.根据权利要求5所述的电动交通工具,其中NaClO3通过机械供应系统供至反应器(32)。
7.根据权利要求6所述的电动交通工具,其中NaClO3通过蜗杆(50)供至反应器(32)。
8.根据权利要求5所述的电动交通工具,其中NaClO3通过重力供至反应器(32)。
全文摘要
本发明涉及具有包括反应器(32)的燃料电池(13)的交通工具(10),反应器(32)用于分解氯酸钠(NaClO3),产生氧气和氯化钠。气态氢机载储存,优选地储存在低压下于具有金属氢化物的氢气罐(21)内。储存的氢和氯酸钠分解反应器按需逐步产生的氧气由燃料电池消耗来产生电。该交通工具包括用于通过NaClO3的分解所产生的氯化钠的储存罐(37)。
文档编号H01M8/06GK102971899SQ201180031863
公开日2013年3月13日 申请日期2011年6月7日 优先权日2010年6月29日
发明者A·德尔菲诺 申请人:米其林集团总公司, 米其林研究和技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1