具有射频分路的静电卡盘的制作方法

文档序号:12513912阅读:790来源:国知局
具有射频分路的静电卡盘的制作方法与工艺

本发明涉及用以从工作在具有高RF电压的条件中的静电卡盘(electrostatic chuck ,ESC)实现除去卡盘(de-chuck)的ESC RF分路(shunt)。



背景技术:

ESC通常用于在半导体制造过程期间保持硅晶片。它们通常包括金属基板和薄电介质层;金属基板维持在相对于晶片的高电压处,并且所以静电力将晶片夹紧到它。静电卡盘可以具有引脚或者台面,其高度包括在所报告的电介质厚度中。

存在两种类型的ESC以在处理像Si晶片或玻璃衬底这样的衬底时控制温度,该衬底具有安装在这些上的薄化Si晶片:Johnson-Rahbeck类型,其中顶部电介质层具有残余电导率;以及Coulomb类型,其中顶部电介质层为高度阻性。Coulomb类型具有以下优点:具有来自电极的低泄露电流并且抓取力几乎不受温度所影响。Coulomb类型ESC的一个可能的实施例在图1中示出。构建和应用这些ESC的方式在US20060043065(A1)、US2006164785(Semco)、US2003-0095370A1、US_20130279066_A1和其它文档中进行了描述。在US_20130284709_A1中,公开了以低RF损耗嵌入在ESC电介质定位盘(puck)中的内部和外部RF电极的应用。

在许多应用中,Coulomb类型ESC在处理腔室中使用,其中利用射频(RF)对衬底进行处理。特别地,当应用高RF电压时,观察到的是,电荷累积在ESC的顶部电介质层上。在该情况下,在处理之后存在衬底没有释放的风险。

在的应用RF处理之后除去卡盘策略在US6307728B1、US5933314和US5835333中进行了描述。此处,使用偏置电压来均衡掉由于RF放电中的自偏置电压所引发的电荷。US5103367提出使用第三电极作为参考以感测第一和第二电极上的所要求的抓取力和释放力。

US5325261描述了使用作为电容而测量的衬底的机械距离来调节ESC的所要求的释放电压。在WO2011063084中提出衬底周围的边缘环。这些通常是绝缘的并且提供衬底和较低边缘环水平之间的高度中的间隙。

电介质项圈环在WO1999014796(A1)和WO2011063084(A2)中描述,这些被限定为具有低电导率。嵌入在电介质材料中并且通过分压器电压而耦合到RF源的第二RF电极公布在WO2013062833(A1)中。在US20030211757(A1)中要求保护比衬底大的电极以及保护晶片边缘并且仍旧允许RF场的良好耦合的陶瓷环。

现有技术的缺陷

观察到的是,如果向组装件应用高RF电压,则不保证经处理的衬底从Coulomb类型ESC的除去卡盘。在存在高等离子体密度的情况下,在溅射和ICP蚀刻中的RF偏置应用期间观察到这种附着问题。然而,在一些情况下,甚至存在仅有RF的情况下观察到的附着,这意味着没有处理气体,没有等离子体,并且没有应用ESC电压。附着是累积的;其可能在相同过程期在一系列原本同样的衬底中间发生在晶片1、2、5或15上。附着涉及RF电压并且不涉及RF电流:例如,具有高RF电压的过程,比如1000V峰峰值引起早期并且最强的附着,以一定顺序的晶片编号1或2已经将不会安全地释放。相比而言,具有高RF电流以及相比较低电压的过程(比如电感耦合等离子体(ICP))示出在电荷的累积中的延迟并且因此随后附着,这可能是在衬底3到8上。

具体实施方式

所描述的解决方案是基于具有顶部和底部电介质的双极Coulomb类型ESC,但是其同样也可以地应用于其它ESC类型。

图2示出了位于RF卡盘主体(2)上的ESC(1)的现有技术。ESC(1)包括陶瓷主体(3),在其上已经应用平面电极作为底部电极(4)和顶部电极(5)。电极相间错杂并且通过相反极性而驱动以使得能够实现双极卡盘。底部电极(4)和顶部电极(5)通过穿过陶瓷主体的通孔(6、7)而连接以用于两极。这些通孔仅示例性地示出。RF从RF卡盘电容耦合到底部电极(4)。通过通孔,RF电力驱动顶部电极(5),其从那里电容耦合到衬底(11)。在RF卡盘主体和ESC的中心处,提供后侧气孔(10)以使得能够通过后侧气垫而实现ESC和衬底(11)之间的良好热学接触。

在高RF电压的情况下ESC的除去卡盘问题(称为附着)的解决方案是在ESC的外部边缘处应用RF分路(12),如在图3中概示。该分路连接RF卡盘主体(2)与衬底(11)的后侧。其由具有良好电导率的材料制成。分路可以是所溅射的金属,比如Al、丝网印刷或以其它方式应用的金属膜。优选地,应用惰性金属,比如Pt。可替换地,可以应用碳基膜,其提供最低摩擦并且仍旧提供良好导电率。

常见做法是使ESC为分路顶部上的可交换部分。在该情况下,可以应用夹紧环(13)以将ESC固设在分路顶部上,如在图4中概示。夹紧件设计成使得其接触晶片后侧以担任RF分路。其优选地由金属制成。因为RF分路可以与卡盘上方的等离子体接触,所以其优选地由具有低溅射率的材料制成,其还与随后的处理步骤兼容。由Ti制成的环例如将满足这些要求。然而,在一些情况下,可能甚至请求其在具有最低污染风险和在这被ESC力吸引时抵抗衬底运动的最低摩擦的RF分路环上应用膜。

图5示出了通过接触具有RF卡盘电势的衬底后侧的导电层(12)而形成的ESC分路。RF卡盘没有在此处绘出。该层具有在0.1和50μm之间的范围中的厚度d,该厚度d优选地在0.5和10μm之间的范围中。从外部轮缘向内涂敷到ESC顶部上的层的宽度w在0.1和5mm之间的范围中,优选地在1和3mm之间。可替换地,导电层可以涂敷在ESC边缘周围(图6),使得其接触它所位于的RF卡盘的金属部分。

导电环(13)可以提供与层(12)相同的功能。此外,该环可以用于将ESC夹紧在RF卡盘上(图7)。为了确保良好接触,环(13)必须设计成稍微高于ESC顶部水平。ESC顶部水平上方的环的高度h为

0 < h < 0.1mm

环可以是弹簧加载的。由于环的内部边缘可能在这被ESC吸引时损坏衬底,所以进一步提出使用带轮廓的分路环,如在图8中所示,这里环的内部高度hi在ESC顶部水平之下并且外部高度h在其之上。

在图7和8中设计的解决方案优选用于蚀刻应用,其中分路环不应当暴露于过程等离子体。当应用ESC以用于具有高RF偏置的溅射或PVD过程时,分路环可以具有附加功能以作为针对所沉积的材料的保护屏障。

图9示出了在具有和没有涂层(15)的情况下的用于PVD应用的优选ESC分路环(14)的设计。然而,该设计也可以用于蚀刻应用。

也可以通过提供来自衬底以及去往RF卡盘的电气接触的嵌入式结构而实现RF分路,其可以以其它方式覆盖有电介质材料(16)。图10示出了具有电介质覆盖物的RF分路环,然而后者也可以应用于比如图5或6中的层。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1