一种低温烧结的巨介陶瓷电容器介质及其制备方法与流程

文档序号:17795804发布日期:2019-05-31 20:45阅读:180来源:国知局

本发明涉及无机非金属材料技术领域,特指一种低温烧结、巨介、电容温度变化率小的陶瓷电容器介质。它采用电容器陶瓷普通化学原料,制备得到无铅、无镉的巨介、电容温度变化率小的陶瓷电容器介质,还能大大降低电容器陶瓷的烧结温度,该介质适合于制备单片陶瓷电容器,能大大降低陶瓷电容器的成本,该介质介电常数巨高,容易实现陶瓷电容器的小型化,同时能提高耐电压以扩大陶瓷电容器的应用范围,并且在制备和使用过程中不污染环境。



背景技术:

高介电常数为电容性器件的体积微型化提供了可能性。随着电子器件微型化的发展,高介电常数材料在微电子技术中起着越来越重要的作用。钛酸铜钙(CaCu3Ti4O12,简称CCTO)陶瓷是其中一种最具代表性的高介电常数材料。CCTO陶瓷不论单晶还是多晶形态都呈现出异常高的介电常数,近年受到越来越多的关注。CCTO陶瓷具有很多优点,例如介电常数非常大(εr为104)、在比较宽的频率范围和相当广的温度范围内介电常数随频率和温度的变化很小、制备工艺也相当简单,而且介电常数的大小可以通过改变烧结条件来调节,在谐振器、滤波器、存储器等重要电子器件方面具有很大的应用潜力,因此特别引人注目。然而,通常制备的CCTO陶瓷的介质损耗(tanδ值)很大,在实际应用中会导致器件或电路的发热、工作不稳定或信号衰减等问题,不利于其作为电子材料的应用。为了解决CCTO陶瓷介质损耗大的问题,研究者进行了一些研究,但这些研究的结果不是很成功,最终都没有获得综合介电性能指标满足实际应用要求的改性CCTO陶瓷。具体讲,这些尝试不是没有达到足够程度降低介质损耗的目的,就是明显损害了CCTO陶瓷原有的高介电常数特性,致使改性后介电常数很低,或者破坏了CCTO陶瓷原有的低频段介电常数基本不随频率发生变化的优点。因此,寻找出一种既可以保持CCTO陶瓷所具有高介电常数的优点又能显著地降低介质损耗的有效方法,是一个重要的研究课题。多层陶瓷电容器(MLCC)具有体积小、容量大、可靠性高和介电常数高等优点,是众多电子元件中应用最广泛之一。MLCC的成本主要来自于内电极,其材料主要为钯或银钯合金。但由于钯的价格居高不下,因此介电陶瓷低温烧结的研究是国内外该领域的热点之一。目前,巨介陶瓷电容器介质的烧结温度较高,一般为1040-1100℃,有必要降低其烧结温度,以满足MLCC的要求。



技术实现要素:

本发明的目的是提供一种巨介低容温变化率的陶瓷电容器介质。

本发明的目的是这样来实现的:

巨介低容温变化率的陶瓷电容器介质配方组成包括:CaCu3Ti4O1288~96wt.%,(Ba0.65Sr0.35)TiO30.01~7.0wt.%,Bi2WO60.01~6wt.%,Nd2O30.01~0.6wt.%,SiO2-Li2O-B2O3玻璃粉(ZLB)0.1~4wt.%,BiMnO30.01~0.5wt.%,(Li1/2Bi1/2)TiO30.5~4wt.%;其中CaCu3Ti4O12、(Ba0.65Sr0.35)TiO3、BiMnO3、Bi2WO6、(Li1/2Bi1/2)TiO3和SiO2-Li2O-B2O3玻璃粉(ZLB)分别是采用常规的化学原料以固相法合成。

本发明的介质中所用的CaCu3Ti4O12是采用如下工艺制备的:将常规的化学原料CaCO3、、CuO和TiO2按1:3:4摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于900-950℃左右保温360-540分钟,固相反应合成CaCu3Ti4O12,冷却后研磨过200目筛,备用。

本发明的介质中所用的(Li1/2Bi1/2)TiO3是采用如下工艺制备的:将常规的化学原料Li2CO3、Bi2O3、TiO2按1/4:1/4:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于800℃左右保温120分钟,固相反应合成(Li1/2Bi1/2)TiO3,冷却后研磨过200目筛,备用。

本发明的介质中所用的SiO2-Li2O-B2O3是采用如下工艺制备的:将常规的化学原料SiO2和Li2CO3和B2O3按1:0.5:0.5摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于650℃左右保温120分钟,然后在水中淬冷,冷却后得到SiO2-Li2O-B2O3玻璃粉,研磨过200目筛,备用。

本发明的介质中所用的Bi2WO6是采用如下工艺制备的:将常规的化学原料Bi2O3和WO3按1:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于850℃保温120分钟,冷却后得到Bi2WO6,研磨过200目筛,备用。

本发明的介质中所用的BiMnO3的制备过程包括:将常规的化学原料Bi2O3和MnCO3按1/2:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于750℃保温120分钟,冷却后得到BiMnO3,研磨过200目筛,备用。

本发明采用如下的陶瓷介质制备工艺:首先采用常规的化学原料用固相法分别合成CaCu3Ti4O12、(Ba0.65Sr0.35)TiO3、(Li1/2Bi1/2)TiO3、Bi2WO6、BiMnO3和SiO2-Li2O-B2O3玻璃粉(ZLB),然后按配方配料将配合料球磨粉碎混合,进行烘干后,加入粘合剂造粒,再压制成生坯片,然后在空气中进行排胶和烧结,获得陶瓷电容器介质,在介质上被电极即成。

上述陶瓷介质的配方最好采用下列二种方案:

CaCu3Ti4O1290~95wt.%,(Ba0.65Sr0.35)TiO30.03~5.1wt.%,Bi2WO60.01~0.8wt.%,Nd2O30.03~0.5wt.%,SiO2-Li2O-B2O3玻璃粉(ZLB)0.3~3.7wt.%,BiMnO30.01~0.3wt.%,(Li1/2Bi1/2)TiO30.5~3.7wt.%。

CaCu3Ti4O1291~94wt.%,(Ba0.65Sr0.35)TiO30.1~4.5wt.%,Bi2WO60.01~0.8wt.%,Nd2O30.08~0.4wt.%,SiO2-Li2O-B2O3玻璃粉(ZLB)0.3~3.5wt.%,BiMnO30.01~0.3wt.%,(Li1/2Bi1/2)TiO30.5~3.4wt.%。

本发明与现有技术相比,具有如下优点:

1、本专利的介质采用如下制备工艺:首先分别合成CaCu3Ti4O12、(Ba0.65Sr0.35)TiO3、(Li1/2Bi1/2)TiO3、Bi2WO6、BiMnO3和SiO2-Li2O-B2O3玻璃粉(ZLB),然后按照配方配料,球磨混合,干燥,加入一定量的PVA溶液,造粒,干压成型,烧结,被银电极,测试性能。烧结温度为900~920℃。

2、本介质的介电常数高,为25000以上;耐电压高,直流耐电压可达3.0kV/mm以上;介质损耗小,小于0.04。本介质的介电常数高,能实现陶瓷电容器的小型化和大容量,同样能降低成本。

3、本介质的温度系数低,电容温度变化率小,符合X8R特性的要求。介质损耗小于0.04,使用过程中性能稳定性好,安全性高。

4、主要原料采用陶瓷电容器级纯即可制造出本发明的陶瓷介质。

具体实施方式

现在结合实施例对本发明作进一步的描述。表1给出本发明的实施例共4个试样的配方。

本发明的实施例共4个试样的配方的主要原料采用陶瓷电容器级纯,在制备时首先采用常规的化学原料用固相法分别合成CaCu3Ti4O12、(Ba0.65Sr0.35)TiO3、Bi2WO6、BiMnO3和(Li1/2Bi1/2)TiO3和SiO2-Li2O-B2O3玻璃粉(ZLB),然后按上述配方配料,将配好的料用无水乙醇采用行星球磨机球磨混合,料:球:无水乙醇=1:3:(0.6~1.3)(质量比),球磨4~8小时后,烘干得干粉料,在干粉料中加入占其重量8~10%的质量浓度为10%的聚乙烯醇溶液,进行造粒,混研后过40目筛,再在20~30Mpa压力下进行干压成生坯片,然后在温度为900~920℃下保温6~10小时进行排胶和烧结,再在780~800℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得巨介陶瓷电容器,测试其介电性能。上述各配方试样的介电性能列于表2。

从表2可以看出所制备的电容器陶瓷耐电压较高,直流耐电压达3.0kV/mm以上;介电常数高,达25000以上;介质损耗小于0.04;电容温度变化率小,符合X8R特性的要求。

表1本发明的实施例共4个试样的配方

表2各配方试样的介电性能

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1