一种紧凑的椭圆环形双极化基站天线的制作方法

文档序号:11487593阅读:329来源:国知局
一种紧凑的椭圆环形双极化基站天线的制造方法与工艺

本实用新型涉及一种双极化基站天线,尤其是一种紧凑的椭圆环形双极化基站天线,属于无线移动通信技术领域。



背景技术:

在现代移动通信系统中,基站天线是通信设备之间电信号与空间辐射电磁波的转换器,其性能好坏将直接影响整个系统的整体性能,因此基站天线在整个通信系统中具有剧组轻重的地位。现代基站天线可以使得移动通信网络覆盖范围更加广阔,通信容量更大,而且速率更高,双极化基站天线可以增加容量且满足其他性能指标。

随着现代电信技术的不断发展,移动通信已在已进入第四代移动通信网络(4G网络),而且第五代移动通信(5G网络)也在研发中。在目前的新一代移动通信体制下,多种通信标准要求基站天线可以实现多系统共用,以此节省基站的数量,减少网络建设成本。目前已存的通信系统如GSM1800、CDMA、WCDMA和TD-WCDMA频带范围均在1710MHz~2170MHz内,因此需要一种能够完全覆盖1710MHz~2170MHz的基站天线,并且要求各项指标都具有稳定的宽带特性,例如驻波比带宽(VSWR<1.5)、半功率波瓣宽度满足65°±5°、增益、隔离度、交叉极化比等等,同时基站天线的成本控制和结构简单也很重要。

据调查与了解,目前公开的现有技术如下:

1)2016年温定良等人发表在IEEE ANTENNAS AND PROPAGATION上题为“A Dual-polarized Planar Antenna Using Four Folded Dipoles and Its Array for Base Stations”的文章,其通过使用Y型馈电来实现较宽的阻抗带宽。

2)2009年Y.-H.Huang等人发表在ELECTRONICS LETTERS上题为“Broadband dual-polarised antenna with high isolation for wireless communication”的文章,其通过弯折结构与同轴线馈电,实现了宽阻抗带宽和稳定方向图,因此获得了较宽的阻抗带宽和稳定的辐射方向图。



技术实现要素:

本实用新型的目的是为了解决上述现有技术的缺陷,提供了一种紧凑的椭圆环形双极化基站天线,该天线性能优良、结构简单、加工方便、加工成本低,且调节简单方便。

本实用新型的目的可以通过采取如下技术方案达到:

一种紧凑的椭圆环形双极化基站天线,包括介质基板、反射地板、第一同轴线和第二同轴线,所述反射地板位于介质基板下方,所述第一同轴线和第二同轴线位于介质基板与反射地板之间,所述介质基板的下表面设有第一椭圆环形辐射单元、第二椭圆环形辐射单元、第三椭圆环形辐射单元和第四椭圆环形辐射单元,介质基板的上表面设有第一Y形馈电单元和第二Y形馈电单元;

所述第一椭圆环形辐射单元和第三椭圆环形辐射单元相互对称形成第一天线结构,所述第二椭圆环形辐射单元和第四椭圆环形辐射单元相互对称形成第二天线结构;

所述第一同轴线分别与第一椭圆环形辐射单元、第一Y形馈电单元相连,所述第二同轴线分别与第二椭圆环形辐射单元、第二Y形馈电单元相连。

作为一种优选方案,所述第一椭圆环形辐射单元、第二椭圆环形辐射单元、第三椭圆环形辐射单元和第四椭圆环形辐射单元以圆周方式依次排布在介质基板的下表面。

作为一种优选方案,所述介质基板的下表面还设有第一寄生单元、第二寄生单元、第三寄生单元和第四寄生单元,所述第一寄生单元位于第一椭圆环形辐射单元与第二椭圆环形辐射单元之间,所述第二寄生单元位于第二椭圆环形辐射单元与第三椭圆环形辐射单元之间,所述第三寄生单元位于第三椭圆环形辐射单元与第四椭圆环形辐射单元之间,所述第四寄生单元位于第四椭圆环形辐射单元与第一椭圆环形辐射单元之间。

作为一种优选方案,所述第一Y形馈电单元包括依次相连的第一微带部分和第一弯折延伸部分,所述第二Y形馈电单元包括依次相连的第二微带部分、第三微带部分、第四微带部分和第二弯折延伸部分,其中第三微带部分位于介质基板的下表面;其中,所述第一弯折延伸部分用于耦合激励第三椭圆环形辐射单元,所述第二弯折延伸部分用于耦合激励第四椭圆环形辐射单元。

作为一种优选方案,所述介质基板上开设有第一通孔、第二通孔、第三通孔和第四通孔,所述第二微带部分通过第三通孔与第三微带部分相连,所述第三微带部分通过第四通孔与第四微带部分相连;所述第一同轴线的外导体与第一椭圆环形辐射单元相焊接,第一同轴线的内导体通过第一通孔与第一微带部分相焊接,所述第二同轴线的外导体与第二椭圆环形辐射单元相焊接,第二同轴线的内导体通过第二通孔与第二微带部分相焊接。

作为一种优选方案,所述反射地板的四周设有与反射地板垂直的第一翻边以及第二翻边。

作为一种优选方案,所述反射地板、第一翻边和第二翻边均采用铜片制成。

作为一种优选方案,所述第一同轴线和第二同轴线均采用阻抗为50Ω的同轴线。

本实用新型相对于现有技术具有如下的有益效果:

1、本实用新型的椭圆环形双极化基站天线在介质基板的下表面设置四个椭圆环形辐射单元,这四个椭圆环形辐射单元两两对称形成两个天线结构,使天线具有性能良好、结构简单、加工成本低的优点,同时在介质基板的上表面设置两个Y形馈电单元,不仅能够调节阻抗匹配,而且与四个椭圆辐射单元一起实现了稳定的天线方向图带宽。

2、本实用新型的椭圆环形双极化基站天线在介质基板下表面还设置四个寄生单元,由于四个椭圆环形辐射单元以圆周方式排布,而每个寄生单元设置在相邻的两个椭圆环形辐射单元之间,通过这四个寄生单元来扩展高频带宽,在所需的频带范围(1.71GHz-2.17GHz)内出现两个谐振点,其中第一个谐振点有椭圆环形辐射单元控制,第二个谐振点由寄生单元控制。

3、本实用新型的椭圆环形双极化基站天线布局合理,四个椭圆环形辐射单元分布在介质基板的下表面,两个Y形馈电单元分布在介质基板的上表面,使这Y形馈电单元既能调节阻抗匹配,又可以参与辐射。

4、本实用新型的椭圆环形双极化基站天线结构紧凑,尺寸较小,在实际应用场景中,比现有的同类天线更有优势,经过仿真表明,正向传输参数在所要求的频段(1.71GHz-2.17GHz频段)内小于-25dB,即说明能够完全覆盖所要求的频段,在所要求的的频段内驻波比小于1.5,在所要求的的频段内增益均大于8dB,波瓣宽度在所要求的频段内均在60°~70°之间,满足65°±5°的要求。

附图说明

图1为本实用新型的椭圆环形双极化基站天线的立体结构示意图。

图2为本实用新型的椭圆环形双极化基站天线的椭圆环形辐射单元、Y形馈电单元与同轴线焊接的立体结构示意图。

图3为本实用新型的椭圆环形双极化基站天线的介质基板下表面结构示意图。

图4为本实用新型的椭圆环形双极化基站天线的介质基板上表面结构示意图。

图5为本实用新型的椭圆环形双极化基站天线的S21参数电磁仿真曲线图。

图6为本实用新型的椭圆环形双极化基站天线的驻波比(VSWR)的电磁仿真曲线图。

图7为本实用新型的椭圆环形双极化基站天线的增益的电磁仿真曲线图。

图8为本实用新型的椭圆环形双极化基站天线的水平面半功率波瓣宽度的电磁仿真曲线图。

图9为本实用新型的椭圆环形双极化基站天线的垂直面半功率波瓣宽度的电磁仿真曲线图。

图10为本实用新型的椭圆环形双极化基站天线在1.7GHz时的辐射方向图的电磁仿真曲线图。

图11为本实用新型的椭圆环形双极化基站天线在1.9GHz时的辐射方向图的电磁仿真曲线图。

图12为本实用新型的椭圆环形双极化基站天线在2.1GHz时的辐射方向图的电磁仿真曲线图。

图13为本实用新型的椭圆环形双极化基站天线在1.7GHz时的交叉极化比的电磁仿真曲线图。

图14为本实用新型的椭圆环形双极化基站天线在1.9GHz时的交叉极化比的电磁仿真曲线图。

图15为本实用新型的椭圆环形双极化基站天线在2.1GHz时的交叉极化比的电磁仿真曲线图。

其中,1-介质基板,2-反射地板,3-第一同轴线,4-第二同轴线,5-第一翻边,6-第二翻边,7-第一椭圆环形辐射单元,8-第二椭圆环形辐射单元,9-第三椭圆环形辐射单元,10-第四椭圆环形辐射单元,11-第一寄生单元,12-第二寄生单元,13-第三寄生单元,14-第四寄生单元,15-第一Y形馈电单元,16-第二Y形馈电单元,17-第一微带部分,18-第一弯折延伸部分,19-第二微带部分,20-第三微带部分,21-第四微带部分,22-第二弯折延伸部分,23-第一通孔,24-第二通孔,25-第三通孔,26-第四通孔。

具体实施方式

下面结合实施例及附图对本实用新型作进一步详细的描述,但本实用新型的实施方式不限于此。

实施例1:

如图1-图4所示,本实施例的椭圆环形双极化基站天线包括介质基板1、反射地板2、第一同轴线3和第二同轴线4。

所述介质基板1由PCB板制成,所述反射地板2位于介质基板1下方,其四周均设有与反射地板2垂直的第一翻边5以及第二翻边6,所述反射地板2、第一翻边5和第二翻边6采用金属材料制成,金属材料优选采用铜片;所述第一同轴线3和第二同轴线4位于介质基板1与反射地板2之间,第一同轴线3和第二同轴线4用于传输信号,阻抗为50Ω。

所述介质基板1的下表面设有第一椭圆环形辐射单元7、第二椭圆环形辐射单元8、第三椭圆环形辐射单元9、第四椭圆环形辐射单元10、第一寄生单元11、第二寄生单元12、第三寄生单元13和第四寄生单元14;

所述第一椭圆环形辐射单元7、第二椭圆环形辐射单元8、第三椭圆环形辐射单元9和第四椭圆环形辐射单元10以圆周方式依次排布在介质基板1的下表面,所述第一椭圆环形辐射单元7和第三椭圆环形辐射单元9相互对称形成第一天线结构,所述第二椭圆环形辐射单元8和第四椭圆环形辐射单元10相互对称形成第二天线结构;

所述第一寄生单元11位于第一椭圆环形辐射单元7与第二椭圆环形辐射单元8之间,所述第二寄生单元12位于第二椭圆环形辐射单元8与第三椭圆环形辐射单元9之间,所述第三寄生单元13位于第三椭圆环形辐射单元9与第四椭圆环形辐射单元10之间,所述第四寄生单元14位于第四椭圆环形辐射单元10与第一椭圆环形辐射单元7之间,这四个寄生单元用来扩展高频带宽。

所述介质基板1的上表面设有第一Y形馈电单元15和第二Y形馈电单元16,第一Y形馈电单元15用于给第一天线结构馈电,包括依次相连的第一微带部分17和第一弯折延伸部分18;第二Y形馈电单元16用于给第二天线结构馈电,包括依次相连的第二微带部分19、第三微带部分20、第四微带部分21和第二弯折延伸部分22,其中第三微带部分20位于介质基板1的下表面;所述第一弯折延伸部分18用于耦合激励第三椭圆环形辐射单元9,所述第二弯折延伸部分22用于耦合激励第四椭圆环形辐射单元10。

所述介质基板1上开设有第一通孔23、第二通孔24、第三通孔25和第四通孔26,所述第二微带部分19通过第三通孔25与第三微带部分20相连,所述第三微带部分20通过第四通孔26与第四微带部分21相连;

所述第一同轴线3分别与第一椭圆环形辐射单元7、第一Y形馈电单元15相连,具体为:第一同轴线3的外导体与第一椭圆环形辐射单元7相焊接,第一同轴线3的内导体通过第一通孔23与第一微带部分17相焊接;

所述第二同轴线4分别与第二椭圆环形辐射单元8、第二Y形馈电单元16相连,具体为:第二同轴线4的外导体与第二椭圆环形辐射单元8相焊接,第二同轴线4的内导体通过第二通孔24与第二微带部分19相焊接。

如图5所示,为本实施例的椭圆环形双极化基站天线的S21参数(正向传输系数,即增益)电磁仿真曲线,可以看到本实施例的椭圆环形双极化基站天线S21参数在所要求的频段(1.71GHz-2.17GHz频段)内小于-25dB,即说明能够完全覆盖所要求的频段。

如图6所示,为本实施例的椭圆环形双极化基站天线的驻波比(VSWR)的电磁仿真曲线(port1指输入端口1的驻波比,port2指输出端口2的驻波比),可以看到,两个端口的驻波比在所要求的的频段(1.71GHz-2.17GHz频段)内小于1.5。

如图7所示,为本实施例的椭圆环形双极化基站天线的增益的电磁仿真曲线(port1指输入端口1的增益,port2指输出端口2的增益),可以看到,两个端口的增益在所要求的的频段(1.71GHz-2.17GHz频段)内均大于8dB。

如图8和图9所示,分别为本实施例的椭圆环形双极化基站天线的水平面半功率波瓣宽度的电磁仿真曲线(port1指输入端口1的水平面半功率波瓣宽度,port2指输出端口2的水平面半功率波瓣宽度)和垂直面半功率波瓣宽度的电磁仿真曲线(port1指输入端口1的垂直面半功率波瓣宽度,port2指输出端口2的垂直面半功率波瓣宽度),可以看到,在所要求的频段(1.71GHz-2.17GHz频段)内,两个端口的波瓣宽度均在60°~70°之间,满足65°±5°的要求。

如图10、图12和图13所示,分别为本实施例的椭圆环形双极化基站天线在1.7GHz、1.9GHz、2.1GHz时辐射方向图的电磁仿真曲线;如图13、图14和图15所示,分别为本实施例的椭圆环形双极化基站天线在1.7GHz、1.9GHz、2.1GHz时的交叉极化比的电磁仿真曲线,可以看到完全符合基站天线的要求。

综上所述,本实用新型的椭圆环形双极化基站天线在介质基板的下表面设置四个椭圆环形辐射单元,这四个椭圆环形辐射单元两两对称形成两个天线结构,使天线具有性能良好、结构简单、加工成本低的优点,同时在介质基板的上表面设置两个Y形馈电单元,不仅能够调节阻抗匹配,而且与四个椭圆辐射单元一起实现了稳定的天线方向图带宽。

以上所述,仅为本实用新型专利较佳的实施例,但本实用新型专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型专利所公开的范围内,根据本实用新型专利的技术方案及其实用新型构思加以等同替换或改变,都属于本实用新型专利的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1