具有单片集成的光电检测器用于原位实时强度监视的发光二极管(LED)的制作方法

文档序号:17118606发布日期:2019-03-15 23:34阅读:111来源:国知局
具有单片集成的光电检测器用于原位实时强度监视的发光二极管(LED)的制作方法

本文中公开的主题涉及发光二极管(led)设备。



背景技术:

固态发光设备的性能在近年来已经极大改善,这归功于具有高光视效能和长寿命时间的发光二极管(led)的开发。然而,led输出的强度的逐渐下降如对于较早先代发光设备那样不可避免,尽管以慢得多的速率。

特别地,led的降级机制是高度温度相关的,因为升高的结温将引起光输出中的下降并且因而引起芯片降级中的加速。此外,光源内的单独的led可展现不同的降级速率,甚至在它们经受相同的环境因素的时候。光输出中的这样的长期漂移在典型地包括多个led的发光应用(诸如例如住宅灯和户外显示器)中造成最显著的挑战之一。在一些情况中,基于led的发光设备不产生足够的亮度或发射均匀性,从而导致比制造商确定的期望短得多的寿命。由于led发射所引起的固有地大的发散角,基于led的发光设备的总体发射模式是来自多个led的重叠发射锥的组合,如图1中所图示的。作为结果,来自单独led的离散强度变化将引起总体发射模式中的不均匀性。

除了以上提及的一般发光设备之外,其它基于led的应用(诸如光纤光源以及室内农业和温室照明)需要光源针对由包括静电故障、电极劣化以及其它热学和湿度有关问题的因素所引起的短期环境变化是高度稳定的(即,没有单独led中的强度漂移)。监视多个led输出中的强度变化的一个方法是提供分离的光电检测器,其以特定的角度指向led(图1)。

尽管已经使得多个半导体光电检测器(诸如肖特基势垒光电二极管、p-n、p-i-n、金属-半导体-金属(msm)、金属绝缘体半导体(mis)、以及高电子迁移率晶体管(hfet)传感器)可用于该目的,但是光电检测器连同芯片载体封装在光源上方的芯片外集成需要使用若干庞大的机械组件来维持光电检测器的检测角,从而导致降低的光输出和非均匀的发射。将冗长的光电检测器配置集成到具有窄发散角的led光源上可能是特别有挑战性的。

另外,现有的解决方案仅仅在单个定位和/或角度上是有效的,并且因而不能检测来自多个单独led的强度改变。此外,整个芯片外系统可能对其它非预期的环境因素(诸如冲击或振动)是敏感的,从而潜在地降低总体设备的可靠性。



技术实现要素:

由于以上讨论的挑战,在本领域中仍然有针对以下的需要:开发集成的发光二极管(led)设备,其输出能够被光电检测器有效地监视。本发明的实施例提供针对led发光应用的设备,以及用于制造所述设备的方法。在一些实施例中,一种设备可以包括与在相同的半导体平台上的光电检测器集成的led,使得由光电检测器生成的光电流可以用于监视led的光学输出,所述led位于与光电检测器相邻处。有利地,本文中公开的技术可以用于提供紧凑、稳健和可靠的光电检测器,其能够经由低成本途径来监视led发射。

在实施例中,电子设备可以包括被集成到单个半导体平台上并且被定位成与彼此相邻的led和光电检测器,并且由光电检测器所生成的电流可以用于监视led的光学输出。led二极管和光电检测器可以单片地被制造到单个半导体平台上。

在另一实施例中,一种制造电子设备的方法可以包括:将n型半导体层沉积在衬底的顶部表面上,所述衬底在其底部表面上具有涂层;将有源层沉积在衬底上,所述有源层包括多个量子阱;将p型半导体层沉积在有源层上;将电流扩散层沉积在有源层上;将光致抗蚀剂层沉积在电流扩散层上;根据预定义的图案来掩蔽光致抗蚀剂层,所述预定义的图案限定将形成的led的大小和位置以及将形成的光电检测器的大小和位置;使经掩蔽的光致抗蚀剂暴露于uv光;在光致抗蚀剂显影剂的槽中使电子设备的经uv曝光的表面显影以形成led和光电检测器;以及蚀刻掉表面上的未经掩蔽的区以形成所期望的接触焊盘和沟槽,其被设计用于在led和光电检测器之间的电绝缘。

附图说明

图1是图示了具有芯片外光电检测器的led阵列的示例性实施例的示意图。

图2a-2d是示意图,其描绘了根据本发明的实施例的用于制造单片集成的led-光电检测器设备的光刻过程。图2a图示了涂覆有ito层的起始led晶圆。图2b图示了台面(mesa)限定和icp蚀刻的结果。图2c示出了通过电子束蒸发所沉积的金属焊盘涂层。图2d图示了在led和光电检测器之间的分离。

图3图示了根据本发明的实施例的光束可以在led、蓝宝石衬底和光电检测器内传播的各种角度。

图4a是根据本发明的实施例的操作的集成led-光电检测器设备的缩微照片。

图4b图示了根据本发明的实施例的设备的芯片上光电检测器的电致发光(el)光谱(蓝色;具有在绘图中心附近的峰值的线)以及光谱响应度(黑色;在绘图的顶部、左手侧附近开始的方形)。

图5a展示了分别以暗度和照度测量的、与led集成的示例性芯片上光电检测器的i-v特性。

图5b示出了作为示例性设备的操作时间的函数的光输出功率(红色;如所描绘的较高的、具有方形绘图点的线)以及光电流(蓝色;如所描绘的较低的、具有圆形绘图点的线)的绘图。

图5c示出了光电流(安培)相对于led电流(毫安)的绘图。

图6a和6b是根据本发明的实施例的、其表面沉积有磷光剂的设备的微缩照片。

图6c示出了根据本发明的实施例的具有磷光剂的经封装设备的el光谱。

图7a和7b分别是以多芯片(图7a)和芯片堆叠(图7b)配置所布置的、具有单片集成的芯片上光电检测器的红色、绿色、和蓝色发光二极管的示意图。如图7a中所描绘的,蓝色led是最左侧的,绿色led是最顶部的,并且红色led是最右侧的。如图7b中所描绘的,蓝色led在顶部,绿色led在蓝色led下面,并且红色led在绿色led下面。

图8示出了根据本发明的实施例的、包括基于gan的半导体平台的单片集成的led-光电检测器设备。

图9示出了光电流(安培)相对于电压(伏特)的绘图。

图10a和10b分别是以多芯片(图10a)和芯片堆叠(图10b)配置所布置的、具有单片集成的光电检测器的红色、绿色和蓝色发光微显示器的示意图。如图10a中所描绘的,开始于如所描绘的最顶部的led,第一从左到右的行示出了红色led,下方的下一行示出了绿色led,之后是蓝色、红色、绿色和蓝色led,以此次序。如图10b中所描绘的,蓝色led阵列在顶部,绿色led阵列在蓝色led阵列下面,并且红色led阵列在绿色led阵列下面。

图11a示出了电压(v)相对于电流(ma)的绘图;图11b示出了el强度(a.u.)相对于波长(nm)的绘图,并且图11c示出了光谱宽度(nm)相对于电流(ma)的绘图。

具体实施方式

本发明的实施例提供针对发光二极管(led)发光应用的设备,以及制造所述设备的方法。在一些实施例中,一种设备可以包括与在相同的半导体平台上的光电检测器集成的led,使得由光电检测器生成的光电流可以用于监视led的光学输出,所述led位于与光电检测器相邻处。有利地,本文中公开的技术可以用于提供紧凑、稳健和可靠的光电检测器,其能够经由低成本途径来监视led发射。

在一些实施例中,led和光电检测器具有相同的半导体结构。由于发光和吸收是互补的过程,所以意图用于光发射的led还可以充当光电检测器,其中通过光学吸收来生成电子-空穴对,从而产生在电极之间的大量光电流流动。通过将设备的一区限定为光电检测器,所生成的光电流可以被利用以用于监视位于相同设备上的led的光学输出。

在一些实施例中,led和光电检测器通过单组微制造过程而不是被分离地构造而被共同制造为一单元。该单片集成途径,作为对当前可用的外部集成途径的可替换方案,是有吸引力的制造策略,这是由于其使用较小的电路板、较少的分立组件、以及降低的制造成本。

有利地,本文中所公开的单片集成方法可以改善总体设备性能,这通过减小光电检测器的大小并且允许组件(例如led和光电检测器)被安置成紧密靠近彼此,从而最大化在led和光电检测器之间的光学耦合的效应。此外,本文中所提供的单片制造策略与如果在分立的步骤中制造设备相比利用少得多的材料。在示例性实施例中,led以及具有与led相同(或相似)结构的光电检测器通过使用单组光刻过程而被共同制造在包括例如蓝宝石上gan的相同半导体平台上。

根据本发明的一些实施例,相同平台上位于与led相邻处的光电检测器用于检测led光学输出的能力被归因于涉及两个不同过程(图3)的光耦合机制。首先,并排的(即平面)配置允许从led的经蚀刻的侧壁所发射的光直接辐照附近的光电检测器。另一方面,从led向上发射的光被从设备提取到自由空间中,并且将不会被位于与led相邻处的平面光电检测器检测到。其次,透明衬底(诸如蓝宝石)可以用作波导,其允许向下发射的光的恒定部分朝向光电检测器传播。光电检测器随后将光信号变换成可测量的光电流信号。有利地,利用光电流数据作为监视led的光强度水平的反馈信号,二极管中的任何信号漂移可以针对效率而被校正,从而确保了led设备的长期和短期性能的精确监视。

在一些实施例中,可以通过使用标准微制造过程、除了其它之外尤其包括光刻、蚀刻和金属沉积来单片地制造包括led以及位于相邻处的光电检测器的集成设备。在一些实施例中,可以通过使用从热蒸发、溅射、电子束蒸发、及其组合中所选择的方法来实现层沉积。图2a至2d是示意图,其展示了一组示例性过程,其中蓝宝石上的gan平台用于制造根据本发明实施例的集成设备。在图8中示出了成品设备的图示。

参考图2a,可以通过例如透明蓝宝石衬底上的金属有机化学气相沉积(mocvd)来使基于gan的平台生长。结果产生的基于gan的led结构可以包括顺序地被沉积到衬底上的n型gan层、包括多个量子阱的有源层、以及p型gan层,尽管实施例不限于此。包括例如ni/au或铟锡氧化物(ito)的透明电流扩散层可以被沉积到p型gan层的顶部,以确保在设备表面上的均匀光发射(参见例如图8)。

在一些实施例中,基于gan的平台的底部表面包括反射涂层,所述反射涂层选自例如银、铝、和分布式布拉格反射器(dbr)。在示例性实施例中,涂层包括dbr。dbr,其依赖于具有不同折射率的交流介电材料对,包括波长选择性镜件,所述波长选择性镜件对反射带内的某些波长的光进行反射,并且对透射带内的不同波长的光进行透射。dbr的特性取决于设计参数,诸如例如介电材料的选择及其相应厚度。

图2b图示了被旋涂到电流扩散层上的光致抗蚀剂层,其然后通过光电掩模而被暴露于uv光,所述光电掩模包括预定义的图案,所述预定义的图案限定集成设备的各种组件的台面的边界。台面,如本文中所使用的,指示了设备表面上的区,其具有对设备的特定组件进行限定的不同边界。

在一些实施例中,可以在光致抗蚀剂显影剂的槽中显影设备的经uv曝光的表面。在显影之后,可以在大约3分钟到大约10分钟的持续时间内、以从在大约115℃与大约170℃之间的范围中所选的温度来对光致抗蚀剂图案进行硬烘。在示例性实施例中,可以以近似120℃对光致抗蚀剂图案硬烘大约5分钟。gan的未经涂覆的区可以被蚀刻掉,直到底层n型层被暴露为止。在一些实施例中,可以通过多种方法来实现蚀刻,所述多种方法包括但不限于等离子体蚀刻、离子蚀刻和激光蚀刻。

在一些实施例中,光致抗蚀剂图案可以用于通过使用另一光刻过程暴露在图8中分别被示出为p电极和n电极的p型和n型接触焊盘的区域。特别地,包括例如ti/au和/或ni/au的双层结构可以通过电子束(e-beam)蒸发被沉积并且在槽(例如丙酮槽)中被剥离。接触部可以在大约5分钟到大约10分钟的持续时间内、以从在大约450℃与大约600℃之间的范围中所选的温度经受快速热退火(rta)。在示例性实施例中,可以在氮气氛和/或氧气氛中、在大约550℃下、在大约5分钟内实施rta。

选择性的蚀刻过程随后可以被实施以形成沟槽,其相应地用于led和光电检测器的接触焊盘之间的电绝缘。可以通过使用等离子体蚀刻或脉冲激光蚀刻方法(图2d)来实现蓝宝石上的gan外延层的选择性蚀刻。可以通过激光加工和/或钻石切块锯来对每个单独的集成led-光电检测器芯片进行切块。

led和光电检测器的台面的侧壁可以通过绝缘材料(诸如例如二氧化硅或氧化铝)来被钝化,尽管实施例不限于此。氧化物层可以通过使用例如电子束蒸发、等离子体增强的化学气相沉积(pecvd)、或原子层沉积(ald)(图2c)来被涂覆在整个表面上。

在一些实施例中,集成的led-光电检测器芯片可以通过使用粘合剂(例如丙烯酸树脂和环氧树脂)被接合到晶体管轮廓(to)金属罐封装,并且接合焊盘可以通过导线接合被连接到所述封装。可需要四个导线接合来建立与芯片的电连接,包括led和光电检测器的p焊盘和n焊盘。

在一些实施例中,led的表面面积大幅大于单片集成的光电检测器的表面面积。在示例性实施例中,led的表面面积近似为1000x1000µm2(或更少),并且集成的光电检测器的表面面积近似为100x100µm2(或更少)。在一些实施例中,单片集成的光电检测器位于半导体平台的拐角中,与led相邻并且电分离,所述半导体平台具有根据其目标应用的预定大小。给定平台上的led和光电检测器的形状、尺寸和相对定位基于设备的目标应用而被确定,并且因此不限于本文中所提供的示例。

在图4a中所图示的实施例中,led发射蓝颜色的可见光;然而,本发明的实施例还可以提供在施加偏压的时候发射其它颜色的单色光的led。例如,本发明的实施例与蓝宝石或大块gan衬底上生长的基于gan的led兼容。包括ingan(从大约0.7ev到大约3.4ev)或algan(从大约3.4ev到大约6.2ev)的半导体的直接带隙提供量子阱,所述量子阱可以覆盖宽光谱范围,诸如例如从近似200nm到近似1770nm,并且发射波长(即颜色)可以基于铟或铝的组成而被调谐。图4a是发射单色蓝光的集成led-光电检测器设备的微缩照片,而图4b示出了根据本发明的实施例的设备的对应电致发光光谱。

由于存在斯托克移位效应,所以在光学吸收和发光之间存在光谱差异。例如,图4b中所示的吸收光谱指示了光电检测器能够响应于led发射光谱的较短波长半部。图5a示出了当led以10ma操作中的时候所测量的光电流水平近似比在黑暗条件下测量的高四个数量级,其揭示了集成的光电检测器能够稳健地响应于led所生成的弱照明强度。这是有利的,因为芯片上光电检测器的关键功能是监视led所发射的光强度中的变化。图5b示出了设备老化测试的结果,其揭示了所测量的光电流可以用作用于监视led发射强度的可靠反馈信号。有利地,本文中所提供的集成设备的实施例使能实现以下二者:从led的可见光发射以及通过被单片地集成在相同平台上的光电检测器的可见光检测。

在一些实施例中,一种发光设备可以包括多个电子设备,其均包括被集成在相同半导体平台上的led和光电检测器,并且由每个单独电子设备的光电检测器所生成的电流可以用于监视相同电子设备上的led的光学输出。给定电子设备上的led和光电检测器可以具有相同的半导体结构,并且可以经由单组光刻过程而被单片地制造。在一些实施例中,发光设备是宽带led光源。

在一个实施例中,通过使用磷光剂用于颜色下变换来实现宽带led发射。当被暴露于某些波长的辐照的时候发射光的磷光性材料用于led中的颜色变换。在设备发射较高能量光子(即较短波长)时,磷光体吸收它并且然后重发射较低能量(即较长波长)、并且因而不同地着色的光子。对于白光发射,可以使用黄色、绿色和/或红色的发光磷光体。尽管磷光体材料的集成需要磷光体粉末以及封装层的表面沉积,但是光电检测器的感测能力将保持不受影响,这是由于底层透明衬底(图6a和6b)所提供的光耦合机制所致。

在另一实施例中,宽带led发射通过以平面(即多芯片配置)或垂直堆叠的几何结构(即芯片堆叠的配置)而将多个led装配到单个封装中来被实现,所述多个led均与光电检测器集成并且能够发射与其它led相同或不同的原色(即红色、绿色和蓝色)可见光。芯片堆叠配置通过如下来提供最优颜色:将蓝色led堆叠到绿色led上,所述绿色led随后被堆叠在红色led的顶部。红色led结构可以是在gaas衬底上生长的alingap合金,在所述情况中,所述衬底对于所发射的光将不会是透明的,并且光电检测器将完全依赖于侧壁吸收。三个堆叠的led中的每一个当以芯片堆叠配置被布置的时候可以单独地可控制。如果所有三个都照明,则光学混合的输出可以导致白光发射。每个单独led的光学输出可以通过其对应的单片集成的光电检测器而被容易地监视。在多芯片途径中,宽带发光设备中的分立的蓝色、绿色和红色led可以被单独地驱动,并且各种颜色组件的强度因而可以不同。不像堆叠的配置,多芯片配置不产生混合的颜色,并且因而不构成颜色可调谐的发光设备。在实施例中,以多芯片或芯片堆叠配置所布置的发光源可以用于实现诸如全色微显示器之类的设备。

总而言之,本文中所提供的集成的led-光电检测器设备和方法可以提供若干优点。首先,芯片上功能性和可靠性在降低的封装成本的情况下被改善,通过消除混合的光学器件和其它支撑组件而被实现。其次,在led与光电检测器之间的分离在不拦截led发射的情况下被最小化,从而导致超紧凑的设备结构。第三,芯片上光电检测器与其芯片外相对物相比可以更好地区分来自单独led的强度改变。第四,光电检测器的感测能力保持不受诸如磷光体粉末之类的材料和/或封装层的顶部表面沉积影响,因为光电检测器依赖于来自相邻led的向下传播的光信号。

应当理解的是,本文中所述的示例和实施例仅仅用于说明性目的,并且鉴于此的各种修改或改变将被建议给本领域技术人员,并且将被包括在本申请的精神和范围内。

在本文中被提及或引用的所有专利、专利申请、临时申请和出版物在它们不与本说明书的显式教导不一致的意义上通过引用以其整体被并入,包括所有图和表格。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1