欧姆接触区方块电阻的修正方法与流程

文档序号:11325447阅读:1184来源:国知局
欧姆接触区方块电阻的修正方法与流程

本发明属于测试技术领域,特别涉及到一种欧姆接触区方块电阻的修正方法,可用于异质结晶体管的制备、性能评估及可靠性分析。



背景技术:

以iii-v族材料为代表的宽禁带半导体材料有很多优点,近年来的发展相当迅速。用该类型材料制备的半导体器件具有高电子迁移率、宽带隙、高热传导率、耐高压、耐高温、抗辐照等卓越的优势,可广泛应用在高温大功率、光电子和高频微波及毫米波等领域,具有广阔的市场。因此近年来,该类型的相关器件已经成为国际国内的研究热点。

在基于iii-v族异质结材料制备半导体器件的工艺过程中,欧姆电极的制备是很关键的一步。要制备高性能的该类型异质结半导体器件,能否在金属与势垒层材料界面处形成良好的欧姆接触就显得尤为重要。欧姆电极的制备工艺、制备欧姆电极采用的的金属种类、退火温度的高低等均对欧姆接触电阻有影响。如果欧姆接触电阻过大,会增加源漏功率耗散,器件的输出功率和效率都会受到影响。欧姆接触电阻是评判欧姆接触好坏的重要指标,而欧姆接触区方块电阻的准确测试又是计算欧姆接触电阻的关键。因此,选择合适的方法对欧姆接触区方块电阻进行准确的表征对器件的研制及评估具有非常重要的作用。

目前,测量欧姆接触电阻最普遍的方法是矩形传输线模型tlm法和传统的圆形传输线模型ctlm法。

矩形传输线模型tlm法,主要是通过设计一组具有不等间距的多个矩形电极测试图形,并进行实验测试及数学计算获得有源区方块电阻的数值。在此过程中,通常把有源区的方块电阻值rsh近似作为欧姆区的方块电阻值rshc。该方法存在几个问题:首先,由于欧姆接触区是在有源区上实施了金属淀积、高温退火等复杂的工艺,因此有源区和欧姆接触区的方块电阻并不相等,甚至相差很大,不能做近似处理;其次,矩形传输线模型存在着边缘电流效应,因此采用该模型对欧姆区方块电阻值的精确度有一定影响。

传统的圆形传输线模型ctlm法,主要是通过设计一组具有多个圆形电极的测试图形,并进行较复杂的数学推导及实验测试获得欧姆区方块电阻的近似值。该方法存在几个问题:首先传统的ctlm法在测量时忽略了金属层的薄层电阻,这对实验结果会产生一定的影响;其次,进行末端电阻求解时由于要计算各部分电阻之差,而这几部分电阻值相差很小,作差后误差较大;再者,直接计算欧姆区方块电阻的公式较为复杂,运算量较大,且涉及到非特殊角度的三角函数计算,因此测试及计算分析的总用时较长。

随着半导体器件的进一步发展,原有的欧姆接触区方块电阻测量方法越来越难以适应高性能半导体器件研制的要求。因此,对原有的欧姆接触方块电阻测量结果进行修正变得越来越重要。



技术实现要素:

本发明的目的在于针对上述现有技术的不足,提出一种欧姆接触区方块电阻的修正方法,以简化对欧姆接触区方块电阻的计算复杂度,提高传统传输线模型法对欧姆接触区方块电阻rshc的计算准确度,进而实现对iii-v族异质结半导体器件的工艺监控及可靠性评估。

本发明的技术思路是:通过改进的圆形传输线模型ctlm推导出简单的欧姆接触区方块电阻rshc的修正项公式,基于矩形传输线模型tlm提取的有源区方块电阻rsh对欧姆接触区方块电阻rshc进行修正,其实现方案包括如下:

1)制备欧姆接触测试图形:

在半导体材料上先淀积金属电极或进行离子注入,再通过高温退火和台面隔离制备出两组结构类似的圆形欧姆接触测试图形,第一组测试图形包括一个中心接触的圆形欧姆电极a1和两个同心的圆环形的欧姆电极,即第一圆环形的欧姆电极a2和第二圆环形的欧姆电极a3;第二组测试图形包括一个中心接触的圆形欧姆电极b1和两个同心的圆环形的欧姆电极,即第一圆环形的欧姆电极b2和第二圆环形的欧姆电极b3;

设第一组测试图形的圆形欧姆电极a1与第二组测试图形中的圆形欧姆电极b1的半径相等,均为r1;设第一组欧姆接触测试图形中的第一圆环形欧姆电极a2的内、外半径分别为r2和r3,设第二组欧姆接触测试图形中的第一圆环形欧姆电极b2的内、外半径分别为r′2和r′3;设第一组测试图形中的第二圆环形欧姆电极a3与第二组测试图形中的第二圆环形欧姆电极b3的内、外半径相等,均为r4和r5;

其中,r1、r2、r3、r4、r5的值根据实际所测样片上第一组欧姆接触测试图形中各部分半径测量得出;r′2、r′3的值根据实际所测样片上第二组欧姆接触测试图形中对应部分半径测量得出,且各部分半径的大小关系满足:r1<r2<r3<r4<r5、r1<r′2<r′3<r4<r5,且r2≠r′2或r3≠r′3;

2)基于矩形传输线模型对欧姆接触区方块电阻值进行修正:

2a)在第一组欧姆接触测试图形的圆形欧姆电极a1与第二圆环形欧姆电极a3之间施加偏置电压v1,并在回路中串联电流表,读取电流表的值i1,利用欧姆定律计算得到第一组欧姆接触测试图形的圆形欧姆电极a1与第二圆环形欧姆电极a3之间的总电阻值rl1;

2b)在第二组欧姆接触测试图形的圆形欧姆电极b1与第二圆环形欧姆电极b3之间施加偏置电压v2,并在回路中串联电流表,读取电流表的值i2,利用欧姆定律计算得到第一组欧姆接触测试图形的圆形欧姆电极b1与第二圆环形欧姆电极b3之间的总电阻值rl2;

2c)根据步骤2a)总电阻rl1和2b)步骤中的总电阻rl2,构建欧姆接触区方块电阻修正公式:

其中,等号左边的rshc是待求的欧姆接触区方块电阻,等号右边的第一项rsh是有源区电阻,其值可利用传统的矩形传输线模型tlm法提取,定义等号右边的第二项为修正项δ,即:

其中,r1<r′2<r′3<r4;

利用上式准确算出欧姆接触区方块电阻rshc。

本发明与现有技术相比具有如下优点:

1)本发明解决了现有矩形传输线模型tlm以及传统圆形传输线模型ctlm技术中将有源区的方块电阻rsh近似代替欧姆接触区方块电阻rshc时而产生的误差问题,推导出了欧姆接触区方块电阻rshc的修正项公式,实现了rshc精确计算;

2)本发明测试时,仅需通过半导体参数测试设备分别对两组测试图形进行电学测量,通过构造出的简单的欧姆接触区方块电阻rshc的修正公式,对欧姆接触区方块电阻rshc进行补偿修正,简化了传统圆形欧姆传输线模型ctlm法繁杂的数学计算,且消除了矩形传输线模型的边缘效应造成的影响,实现了快速、准确表征欧姆接触区方块电阻的目的;

3)本发明所用的两组测试图形以常规器件工艺为基础制造,工艺技术简单而稳定,测试方法快速且方便,测试出的欧姆接触区方块电阻有利于对氮化镓微波功率器件进行工艺优化、性能评估和可靠性分析。

附图说明

图1为本发明的实现流程图;

图2为本发明中典型的测试图形剖面结构示意图;

图3为本发明中第一组圆形测试图形的顶视结构示意图;

图4为本发明中第二组圆形测试图形的顶视结构示意图;

图5为本发明中测试电阻值的电路原理图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步的详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。

参照图1,本发明的实现步骤如下:

步骤1,制作欧姆接触区方块电阻测试图形。

参照图2,本步骤的具体实现如下:

1a)利用异质结外延生长法在衬底上自下而上依次生长衬底层、成核层、本征缓冲层、插入层、势垒层;其中常用的衬底为蓝宝石、硅、碳化硅、金刚石等材料,成核层和插入层常用氮化铝材料,常用缓冲层为氮化镓、砷化镓等iii-iv族材料,常用的势垒层为铝镓氮、铟镓氮、铝铟镓氮等材料;

1b)在势垒层上先淀积金属电极或进行离子注入,再通过高温退火及台面刻蚀等工艺,在势垒层和缓冲层形成的异质外延结构上形成两组圆形欧姆接触测试图形,其中第一组圆形测试图形如图3所示,第二组圆形测试图形图4所示。

参照图3,第一组圆形测试图形包括三个不同的欧姆电极:一个圆形欧姆电极a1和两个同心的圆环形欧姆电极,即第一圆环形欧姆电极a2和第二圆环形欧姆电极a3;每个欧姆电极的长度根据金属电极淀积工艺中常用长度范围及测试要求由测试者合理设定。本实例设但不限于第一组圆形测试图形中的圆形欧姆电极a1的半径为r1=90μm,第一圆环形欧姆电极a2的内径为r2=100μm、外径为r3=130μm,第二圆环形欧姆电极a3的内径为r4=140μm,外径为r5=160μm;

参照图4,第二组圆形测试图形包括三个不同的欧姆电极:一个圆形欧姆电极b1和两个同心的圆环形欧姆电极,即第一圆环形欧姆电极b2和第二圆环形欧姆电极b3;每个欧姆电极的长度根据金属电极淀积工艺中常用长度范围及测试要求由测试者合理设定。本实例设但不限于第二组圆形测试图形中的圆形欧姆电极b1的半径为r1=90μm,第一圆环形欧姆电极b2的内径为r′2=95μm、外径为r′3=135μm,第二圆环形欧姆电极b3的内径为r4=140μm,外径为r5=160μm。

步骤2,分别测量第一组、第二组圆形测试图形的总电阻。

参照图5所示的电阻测试原理图,本步骤对两组测试图形的圆形欧姆电极与第二圆环形欧姆电极之间的总电阻测试步骤如下:

2a)在第一组圆形测试图形的圆形欧姆电极a1与第二圆环形欧姆电极a3之间施加偏置电压v1,并在回路中串联电流表,读取电流表的值i1。利用欧姆定律计算得到测试圆形欧姆电极a1与第二圆环形欧姆电极a3之间的总电阻值rl1:

rl1=v1/i1;

2b)在第二组圆形测试图形的圆形欧姆电极b1与第二圆环形欧姆电极b3之间施加偏置电压v2,并在回路中串联电流表,读取电流表的值i2。利用欧姆定律计算得到测试圆形欧姆电极b1与第二圆环形欧姆电极b3之间的总电阻值rl2:

rl2=v2/i2。

步骤3,构造测试图形中欧姆接触区方块电阻rshc的修正项公式。

3a)以本发明中的测试图形为例,根据图3,将第一组圆形测试图形中圆形欧姆电极a1与第二圆环形欧姆电极a3之间的电阻值rl1表示为:

rl1=ra1+ra12+ra2+ra23+ra3,

其中,ra1为第一组圆形测试图形中圆形欧姆电极a1的欧姆接触区的总电阻值,ra12为第一组圆形测试图形中圆形欧姆电极a1与第一圆环形欧姆电极a2之间有源区的电阻值,ra2为第一组圆形测试图形中第一圆环形欧姆电极a2的欧姆接触区沿沟道方向的电阻值,ra23为第一组圆形测试图形中第一圆环形欧姆电极a2与第二圆环形欧姆电极a3之间有源区的电阻值,ra3为第一组圆形测试图形中第二圆环形欧姆电极a3的欧姆接触区的总电阻值;

3b)以本发明中的测试图形为例,根据图4,将第二组圆形测试图形中圆形欧姆电极b1与第二圆环形欧姆电极b3之间的电阻值rl2表示为:

rl2=rb1+rb12+rb2+rb23+rb3,

其中,rb1为第二组圆形测试图形中圆形欧姆电极b1的欧姆接触区的总电阻,rb12为第二组圆形测试图形中圆形欧姆电极b1与第一圆环形欧姆电极b2之间有源区的电阻值,rb2为第二组圆形测试图形中第一圆环形欧姆电极b2的欧姆接触区沿沟道方向的电阻,rb23为第二组圆形测试图形中第一圆环形欧姆电极b2与第二圆环形欧姆电极b3之间有源区的电阻值,rb3为第二组圆形测试图形中第二圆环形欧姆电极b3的欧姆接触区的总电阻;

3c)根据第一组测试图形的圆形欧姆电极a1与第二组测试图形中的圆形欧姆电极b1半径相同、第二圆环形欧姆电极a3和b3半径相同的关系,得到两组欧姆接触测试图形中各部分的电阻关系:ra1=rb1,ra3=rb3,并将步骤3b)中第二组欧姆接触测试图形的圆形欧姆电极b1与第二圆环形欧姆电极b3之间的电阻值rl2表达式变形为:

rl2=ra1+rb12+rb2+rb23+ra3;

3d)分别计算第一组欧姆接触测试图形中第一圆环形欧姆电极a2下方的接触区的电阻值ra2和第二组欧姆接触测试图形中第一圆环形欧姆电极b2下方的接触区的电阻值rb2:

3e)分别计算第一组测试图形中圆形欧姆电极a1与第一圆环形欧姆电极a2之间的有源区电阻ra12和第二组测试图形中圆形欧姆电极b1与第一圆环形欧姆电极b2之间的有源区电阻rb12:

其中,rsh表示有源区方块电阻,rshc表示欧姆接触区方块电阻;

3f)分别计算第一组测试图形中第一圆环形欧姆电极a2与第二圆环形欧姆电极a3之间的有源区电阻ra23和第二测试图形中第一圆环形欧姆电极b2与第二圆环形欧姆电极b3之间的有源区电阻rb23:

3g)将步骤3d)中的ra2计算式、步骤3e)中的ra12计算式以及步骤3f)中的ra23计算式均带入步骤3a)中的rl1的公式中,可得:

3h)将步骤3d)中的rb2计算式、步骤3e)中的rb12计算式以及步骤3f)中的rb23计算式均带入步骤3c)中的rl2的公式中,可得:

3i)将步骤3h)中rl2的表达式与步骤公式3g)中rl1的表达式作差,得到计算欧姆接触区方块电阻rshc的修正公式:

其中,等号左边的rshc是待求的欧姆接触区方块电阻,等号右边的第一项rsh是有源区电阻,其值可利用传统的矩形传输线模型tlm等方法法提取,等号右边的第二项为修正项δ,即:

其中,r1<r′2<r′3<r4。

利用上述修正公式可准确算出欧姆接触区的方块电阻rshc。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,显然对于本领域的专业人员来说,在了解本发明的内容和原理后,在本发明的精神和原则之内可进行修改、等同替换和改进等,例如,本发明所采用的测试图形是基于iii-iv族化合物半导体异质结材料制备的晶体管器件,同样也适用于其他族元素制备的具有欧姆接触区的半导体器件,例如si、ge等材料制备的mos器件。这些所作的修改、等同替换和改进均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1