制备高效CZTS太阳能电池的前驱体溶液及其电池制备与应用的制作方法

文档序号:15277638发布日期:2018-08-28 23:09阅读:314来源:国知局
本发明属于太阳能电池
技术领域
:,具体涉及一种制备高效czts太阳能电池的前驱体溶液及其电池制备方法与应用。
背景技术
::过去几十年中,以碲化镉(cdte)1和铜铟镓硒(cigs)2为吸光层材料的薄膜太阳电池得到快速发展,已经实现了商业化生产。目前碲化镉薄膜太阳能电池在实验室获得的最高光电转换效率达到22.1%3,铜铟镓硒电池达22.6%4,均已超过了多晶硅电池的效率。持续增长的光电转换效率使得化合物薄膜太阳能电池可望与晶硅太阳能电池相竞争。但是,cd元素的剧毒性,in、ga、te元素的资源稀缺性,制约了基于这些薄膜材料的光伏器件的大规模产业化。因此,寻找安全环保、原料储量丰富的半导体材料作为太阳能电池的吸光层成为该领域的研究热点。铜锌锡硫(cu2znsns4,czts)、铜锌锡硒(cu2znsnse4,cztse)以及铜锌锡硫硒(cu2znsn(s,se)4,cztsse)(以上三种简称czts)与薄膜太阳能电池领域表现出色的黄铜矿结构的铜铟镓硒(cigs)材料具有相似的晶体结构和光学带隙,具有较高的理论转化效率(32.3%),同时它们的原料地球储藏极其丰富,价格低廉,安全无毒,因此近年来备受国内外研究者关注。和铜铟镓硒一样,铜锌锡硫材料属于直接带隙半导体材料,光学吸收系数达3*104,而且其光学带隙可以通过调整cu2znsn(sx,se1-x)4中se的含量(x=0~1)在1.0~1.5ev之间任意调控,与太阳能电池材料的最佳光学带隙区间相匹配,是理想的太阳能电池吸光材料。以上特点决定了铜锌锡硫是最有望取代铜铟镓硒的新型低成本光伏材料。czts膜层材料的制备方法主要有以下两大类。一、真空法。主要包括磁控溅射法、真空热蒸发法和脉冲激光沉积法。真空法具有制备的薄膜质量高、薄膜中各化学元素配比易于调节等优点,目前通过该方法制备的铜锌锡硫太阳能电池最高效率为11.6%5。但真空法以高真空环境为实验基础,膜层制备过程能耗高,材料利用率低,且无法满足大面积成膜。二、非真空法。主要包括电化学沉积法6,溶胶凝胶法7,喷雾热解法8,联氨溶液法9,纳米粒子“油墨”前驱体法10等。与真空法相比,非真空法不需要真空操作和高温处理,能耗较低,可用于大面积和基于柔性衬底的薄膜沉积,同时非真空制备法还具备提高材料利用率和低温加工等优点。非真空法中的前驱体溶液法因工艺简单,制备的电池转换效率较高,在近些年颇受研究者关注。ibm公司首先以肼为溶剂制备czts前驱体溶液并制备czts薄膜电池,通过不断的工艺优化,器件效率逐步提高,得到12.6%11的光电转化率,为目前czts太阳能电池的最高值。但肼剧毒、易爆,对人类和环境具有极强的破坏性,故难以将此法应用于工业生产。寻找绿色安全环境友好的制备方法,成为前驱体溶液法研究的重要方向。2011年,华盛顿大学hillhouse课题组首次以二甲基亚砜(dmso)为溶剂,将二价铜盐一水合乙酸铜(cu(oac)2·h2o),二价锡盐二水合二氯化亚锡(sncl2·2h2o),以及氯化锌(zncl2)同时溶于其中,最后溶解硫脲于溶液中作为硫源,得到澄清稳定的前驱体溶液。该溶液通过涂膜,退火,硒化制备吸光层,通过水浴沉积和磁控溅射制备cds缓冲层与zno/ito窗口层,最终得到光电转换效率4.1%的太阳能电池12。其后他们首先将乙酸铜与二氯化锡加入dmso中,利用溶液中cu2+与sn2+的氧化还原反应对前驱体溶液进行改进,得到溶液中含有cu+,sn2+和sn4+离子的前驱体溶液,随后再将氯化锌、硫脲依次加入,最终得到澄清透明溶液,此溶液制备的器件效率达到8.3%13。由于最终制备的铜锌锡硫材料中铜的价态为正一价(cu+),而锡的价态为正四价(sn4+),直接使用一价铜(cu+)和四价锡(sn4+)的化合物作为起始化合物可以避免由溶液中金属离子的价态与最终czts薄膜材料中金属离子的价态不同引起的杂相,提高电池的性能。hillhouse的报道中,虽然通过化学反应将cu2+还原为cu+,但是由于该反应的可逆性以及前驱体化合物的摩尔比例为cu(oac)2·h2o:sncl22h2o=0.8:0.56,该溶液中仍然含有sn2+。我们直接使用一价铜的化合物和四价锡的化合物配制前驱体溶液,得到仅含有cu+与sn4+不含有cu2+与sn2+的前驱体溶液,由该溶液制备的铜锌锡硫太阳能电池具备的光电转化效率达10.5%,而由一价铜(cucl)和二价锡(sncl22h2o)作为前驱体在相同条件下制备的czts电池的效率只有2.6%,表明该方法具有明显的优势。参考文献:1.peng,z.a.;peng,x.g.,formationofhigh-qualitycdte,cdse,andcdsnanocrystalsusingcdoasprecursor.journaloftheamericanchemicalsociety2001,123(1),183-184.2.asaduzzaman,m.;hosen,m.b.;ali,m.k.;bahar,a.n.,non-toxicbufferlayersinflexiblecu(in,ga)se-2photovoltaiccellapplicationswithoptimizedabsorberthickness.internationaljournalofphotoenergy2017.3.green,m.a.;emery,k.;hishikawa,y.;warta,w.;dunlop,e.d.;levi,d.h.;ho-baillie,a.w.y.,solarcellefficiencytables(version49).progressinphotovoltaics2017,25(1),3-13.4.jackson,p.;wuerz,r.;hariskos,d.;lotter,e.;witte,w.;powalla,m.,effectsofheavyalkalielementsincu(in,ga)se2solarcellswithefficienciesupto22.6%.physicastatussolidi(rrl)-rapidresearchletters2016,10(8),583-586.5.lee,y.s.;gershon,t.;gunawan,o.;todorov,t.k.;gokmen,t.;virgus,y.;guha,s.,cu2znsnse4thin-filmsolarcellsbythermalco-evaporationwith11.6%efficiencyandimprovedminoritycarrierdiffusionlength.advancedenergymaterials2015,5(7).6.tang,a.;liu,j.;ji,j.;dou,m.;li,z.;wang,f.,one-stepelectrodepositionfortargetedoff-stoichiometrycu2znsns4thinfilms.appliedsurfacescience2016,383,253-260.7.liu,r.;tan,m.;zhang,x.;chen,j.;song,s.;zhang,w.,impactofsol-gelprecursortreatmentwithpreheatingtemperatureonpropertiesofcu2znsns4thinfilmanditsphotovoltaicsolarcell.journalofalloysandcompounds2016,655,124-129.8.kermadi,s.;sali,s.;ameur,f.a.;zougar,l.;boumaour,m.;toumiat,a.;melnik,n.n.;hewak,d.w.;duta,a.,effectofcoppercontentandsulfurizationprocessonoptical,structuralandelectricalpropertiesofultrasonicspraypyrolysedcu2znsns4thinfilms.materialschemistryandphysics2016,169,96-104.9.bag,s.;gunawan,o.;gokmen,t.;zhu,y.;mitzi,d.b.,hydrazine-processedge-substitutedcztsesolarcells.chemistryofmaterials2012,24(23),4588-4593.10.guo,q.;hillhouse,h.w.;agrawal,r.,synthesisofcu2znsns4nanocrystalinkanditsuseforsolarcells.journaloftheamericanchemicalsociety2009,131(33),11672-+.11.wang,w.;winkler,m.t.;gunawan,o.;gokmen,t.;todorov,t.k.;zhu,y.;mitzi,d.b.,devicecharacteristicsofcztssethin-filmsolarcellswith12.6%efficiency.advancedenergymaterials2014,4(7).12.ki,w.;hillhouse,h.w.,earth-abundantelementphotovoltaicsdirectlyfromsolubleprecursorswithhighyieldusinganon-toxicsolvent.advancedenergymaterials2011,1(5),732-735.13.xin,h.;katahara,j.k.;braly,i.l.;hillhouse,h.w.,8%efficientcu2znsn(s,se)(4)solarcellsfromredoxequilibratedsimpleprecursorsindmso.advancedenergymaterials2014,4(11).技术实现要素:发明目的:为了克服现有技术中存在的不足,本发明提供一种制备高效铜锌锡硫(czts)太阳能电池的前驱体溶液及其电池制备方法与应用,以制备高效czts太阳能电池为目的,通过使用一价铜化合物和四价锡化合物配制前驱体溶液来制备高质量、无杂质相的czts吸光材料,提高了czts薄膜太阳能电池的光电转化效率。技术方案:为实现上述目的,本发明采用的技术方案为:一种制备高效czts太阳能电池的前驱体溶液,由dmso、硫脲及前驱体化合物混合组成,所述前驱体化合物包括一价铜化合物、四价锡化合物和二价锌化合物;以dmso为溶剂,将硫脲、一价铜化合物、四价锡化合物和二价锌化合物溶解在dmso中制备得到澄清透明的前驱体溶液。进一步的,步骤1中所述铜的前驱体化合物为cucl或cu(ch3coo)或者其他一价铜的化合物。进一步的,步骤1中锡的前驱体化合物为sncl4或sncl4·5h2o或sn(ch3coo)4或者其他四价锡的化合物。进一步的,所述前驱体化合物中:铜元素的物质的量:锡与锌元素的物质的量之和为(0.5-2):1;锌元素物质的量:锡的物质的量为(0.5-2):1;硫元素物质的量:铜、锡与锌元素物质的量之和为(1.0-6.0):1。上述的制备高效czts太阳能电池的前驱体溶液的制备方法,制备前驱体溶液的具体方法为分步制备法:以dmso为溶剂,将硫脲、一价铜化合物溶解在dmso中制备溶液一;将四价锡化合物和二价锌化合物溶解在dmso中制备溶液二;将溶液一和溶液二混合得到澄清透明的前驱体溶液。上述的制备高效czts太阳能电池的前驱体溶液的制备方法,制备前驱体溶液的具体方法为一步制备法:首先将硫脲加入到dmso中至完全溶解,再加入一价铜化合物搅拌至溶液澄清透明,随后依次将四价锡化合物、二价锌化合物加入并搅拌,得到澄清透明前驱体溶液。上述的一种制备高效czts太阳能电池的前驱体溶液应用于制备czts太阳能电池,czts太阳能电池的制备方法包括以下步骤:(1)制备前驱体溶液:以dmso为溶剂,将硫脲、一价铜化合物、四价锡化合物和二价锌化合物溶解在dmso中制备得到澄清透明的前驱体溶液;(2)将步骤1中获得的前驱体溶液旋涂在钼玻璃上,加热退火生成czts薄膜;(3)将步骤2中生成的czts薄膜通过在se的气氛中加热,以se原子部分或者全部取代s原子生成czts薄膜材料;(4)将硒化反应后的cztsse膜取出并用超纯水浸泡后置于含有氨水、硫酸镉和硫脲溶液的水夹套烧杯中,在加热情况下进行反应,在cztsse膜表面沉积一层cds;(5)通过磁控溅射技术在步骤4的样品表面依次溅射zno以及ito作为窗口层;(6)通过热蒸镀方法在步骤5获得的样品表面蒸镀金属ni以及al作为阴极。进一步的,步骤2中旋涂与退火的反应条件为:旋涂转速为500~8000rpm,时间为10~600s,退火温度为200~500℃,加热时间为20~120s,重复旋涂退火3~15次。进一步的,步骤3硒化反应的具体步骤如下:(3-1)将czts薄膜与0.2~0.5g的硒粒置于石墨盒中,然后将石墨盒水平缓慢放入石英管中,石英管两端法兰连有气体管路,气体管路上连有压力表与气体阀门;(3-2)用机械泵将石英管中的气体抽至3×10-1torr以下,然后充入氩气至管中气压为常压;(3-3)将管式炉升温至400~600℃,此时样品未被加热;(3-4)移动管式炉,使czts薄膜位于管式炉的恒温区,加热时间为10~30min,硒化过程通过调节气体阀门保持压力稳定;(3-5)最后将管式炉移开,增大氩气流量,将薄膜快速降制室温。进一步的,步骤(5)通过磁控溅射技术在步骤4的样品表面依次溅射20~50nm的zno以及150~200nm的ito;步骤(6)通过热蒸镀方法在步骤5获得的样品表面蒸镀50nm的ni以及500nm的al作为阴极。有益效果:本发明提供的一种制备高效czts太阳能电池的前驱体溶液及其制备方法与应用,与现有技术相比,具有以下优势:本发明通过使用一价铜化合物和四价锡化合物配制前驱体溶液来制备高质量、无杂质相的czts吸光材料,提高了czts薄膜太阳能电池的光电转化效率。附图说明图1.由二价锡(cucl,sncl2·2h2o)和四价锡(cucl,sncl4·5h2o)前驱体溶液制备的前驱体薄膜的xrd图谱;薄膜退火温度为420℃。图2.由二价锡(cucl,sncl2·2h2o)和四价锡(cucl,sncl4·5h2o)前驱体溶液制备的前驱体薄膜硒化后的xrd图谱。图3.二价锡(cucl,sncl2·2h2o)前驱体溶液制备的cu2znsn(s,se)4薄膜的截面(左)与表面(右)扫描电镜(sem)图谱。图4.由四价锡(cucl,sncl4·5h2o)前驱体溶液制备的czts薄膜的截面(左)与表面(右)扫描电镜(sem)图谱。图5.由二价锡(cucl,sncl2·2h2o)和四价锡(cucl,sncl4·5h2o)其前驱体溶液制备的czts太阳能电池的电流-电压(j-v)曲线。具体实施方式本发明采用以下技术方案:一种制备高效czts太阳能电池的前驱体溶液,包括以下步骤:(1)制备前驱体溶液。方法一:分步制备法。以二甲基亚砜(dmso)为溶剂,将硫脲、一价铜化合物溶解在dmso中制备溶液一;将四价锡化合物和二价锌化合物溶解在dmso中制备溶液二;将溶液一和溶液二混合得到澄清透明的前驱体溶液。方法二:一步制备法。首先将硫脲加入到dmso中至完全溶解,再加入一价铜化合物搅拌至溶液澄清透明,随后依次将四价锡化合物、二价锌化合物加入并搅拌,得到澄清透明前驱体溶液。(2)将步骤1中获得的前驱体溶液旋涂在钼玻璃上,加热退火生成czts薄膜;(3)将步骤2中生成的czts薄膜通过在se的气氛中加热,以se原子部分或者全部取代s原子生成czts薄膜材料;(4)将硒化反应后的cztsse膜取出并用超纯水浸泡后置于含有氨水、硫酸镉和硫脲溶液的水夹套烧杯中,在加热情况下进行反应,在cztsse膜表面沉积一层cds;(5)通过磁控溅射技术在步骤4的样品表面依次溅射20~50nm的zno以及150~200nm的ito;(6)通过热蒸镀方法在步骤5获得的样品表面蒸镀50nm的ni以及500nm的al作为阴极。优选的,步骤1中所述铜的前驱体化合物为cucl或cu(ch3coo)或者其他一价铜的化合物。优选的,步骤1中锡的化合物为sncl4,sncl4·5h2o,sn(ch3coo)4或者其他四价锡的化合物。优选的,步骤1中加入的前驱体化合物中,铜元素的物质的量:锡与锌元素的物质的量之和为(0.5-2):1;前驱体化合物中,锌元素物质的量:锡的物质的量为(0.5-2):1;硫元素物质的量:(铜元素物质的量+锡元素物质的量+锌元素物质的量)为(1.0-6.0):1。优选的,步骤2中旋涂与退火的反应条件为:旋涂转速为500~8000rpm,时间为10~600s,退火温度为200~500℃,加热时间为20~120s,重复旋涂退火3~15次。优选的,步骤3硒化反应的具体步骤如下:(3-1)将czts薄膜与0.2~0.5g的硒粒置于石墨盒中,然后将石墨盒水平缓慢放入石英管中,石英管两端法兰连有气体管路,气体管路上连有压力表与气体阀门;(3-2)用机械泵将石英管中的气体抽至3×10-1torr以下,然后充入氩气至管中气压为常压;(3-3)将管式炉升温至400~600℃,此时样品未被加热;(3-4)移动管式炉,使czts薄膜位于管式炉的恒温区,加热时间为10~30min,硒化过程通过调节气体阀门保持压力稳定;(3-5)最后将管式炉移开,增大氩气流量,将薄膜快速降制室温。下面结合附图和实施例对本发明作更进一步的说明。实施例下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实例。根据下述实施例,可以更好的理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。1.前驱体溶液的制备。配制方案一。首先配制前驱体溶液一,量取4ml二甲基亚砜dmso至试剂瓶中,加入1.5602g(20.4mmol)硫脲,室温下搅拌使其全部溶解,继续加入0.5643g(5.7mmol)cucl,搅拌至澄清透明。配制前驱体溶液二,量取4mldmso至试剂瓶中,加入1.3673g(3.9mmol)sncl4·5h2o搅拌至完全溶解,继续加入0.8780g(4.0mmol)zn(ch3coo)2·2h2o搅拌至澄清透明。随后将溶液一二混合,继续搅拌至澄清透明,得到体积约为9ml的澄清透明前驱体溶液。配制方案二,量取8mldmso至试剂瓶中,加入1.5602g(20.4mmol)硫脲,室温下搅拌使其全部溶解,继续加入0.5643g(5.7mmol)cucl,搅拌至溶液澄清透明。随后加入1.3673g(3.9mmol)sncl4·5h2o搅拌至完全溶解,继续加入0.8780g(4.0mmol)zn(ch3coo)2·2h2o搅拌至澄清透明,得到体积约为9ml的澄清透明前驱体溶液。2.铜锌锡硫(czts)前驱体薄膜的制备。在手套箱中,将预先清洗好的钼玻璃固定在旋涂仪的吸盘上,设置参数(旋涂速度为1500转/分,旋涂时间为60s)后,用针管取出前驱体溶液,经0.2μm过滤膜过滤后将溶液滴加在钼玻璃上,使溶液铺满钼玻璃的表面,开始旋涂。旋涂结束后,将样品放到预先加热到420℃的热台上加热(退火)2min。待样品冷却后,重复以上旋涂-加热过程7次,得到czts前驱体薄膜。3.铜锌锡硫硒(cztsse)薄膜的制备。将两片退火后的样品(2.45cm×2.45cm)置于石墨盒中,称量约0.35g的se粒对称放入石墨盒中,将石墨盒放入管式炉的一侧中,将阀门关紧,抽真空使管内真空度达到3×10-1torr后往管内通入氩气,重复以上操作3次以排净管内的空气,确保硒化反应在无氧环境下进行。最后调节气体阀门,控制较小的氩气流量。将管式炉在30min内升温至540℃,此时样品未被加热。待温度升至540℃后,通过调节气体阀门控制氩气流量,保持当压力表指针指向0mpa,在常压下进行硒化反应。然后移动管式炉至样品处,使样品在管式炉的恒温区位置,保持管式炉540℃下加热25min,加热结束后将管式炉移开,将氩气流量加大,使样品快速降至室温。4.缓冲层cds的制备。硒化反应结束后,将石墨盒中的样品取出置于超纯水中浸泡6min,然后通过化学浴沉积法(cbd)法沉积cds缓冲层。第一步:设置水浴温度为65℃,用量筒分别量取22ml浓度为0.75mol/l的硫脲溶液,22ml浓度为0.015mol/l的硫酸镉溶液以及28ml的氨水。第二步:将量好的氨水和硫酸镉溶液倒入150ml超纯水中混合,将混合溶液倒入水夹套烧杯中,随后并将浸泡6min后的样品放入水夹套烧杯。之后将65℃的循环水充入水夹套烧杯的夹层加热并开始计时。第三步:1min后将预先量取好的硫脲溶液倒入反应溶液中。随着反应的进行,溶液由澄清变为淡黄,最终变为黄色的半透明悬浊液。第四步:反应10min后取出样品,用超纯水冲洗样品表面除去表面吸附的cds颗粒,然后用氮气枪将样品吹干。5.窗口层(zno/ito)的制备。窗口层zno和ito由磁控溅射法制备。磁控溅射仪溅射zno,溅射功率100w,氩气流量为67sccm,氧气流量为13sccm,溅射时气体压力为0.5pa,溅射时间为5min。溅射ito的溅射功率为80w,氩气流量为80sccm,溅射时气体压力为0.25pa,溅射时间为20min。6.电极(ni/al)的制备。电池的阴极由金属ni和al组成,通过热蒸镀法制备。ni和al的厚度分别为50nm和500nm。本发明实施例提供了一种新的制备高效czts太阳能电池的前驱体溶液的制备方法,即通过使用一价铜的化合物和四价锡的化合物配制前驱体溶液,得到仅含有一价铜离子与四价锡离子(不含有二价铜离子与二价锡离子)的前驱体溶液,制备出高效率的铜锌锡硫太阳能电池。实验中分别以氯化亚铜与二水合二氯化锡、氯化亚铜与五水合四氯化锡作为前驱体化合物制备只含有一价铜与二价锡、只含有一价铜与四价锡的两组前驱体溶液进行对照。将两组溶液在相同的条件下分别经过旋涂、退火、硒化制备czts吸光膜层和太阳能电池,并对结果做了对比。图1是由两种溶液经过旋涂、退火制备的前驱体薄膜(硒化前)的x-射线衍射图(xrd)。由图1可以看出,两个膜在衍射角2-theta=28.5,47.3,56.1度处均出现强的衍射峰,这些衍射峰分别对应铜锌锡硫相(czts)的(112),(220),(312)晶面(pdf#26-0575),表明两组前驱体膜中均有czts相生成。但是在二价锡前驱体溶液组硒化前的膜层中除了来自czts的衍射峰外,在2-theta=31.53,31.97,30.47,39.04处还存在很强的衍射峰,这些峰与sns的标准图谱(pdf#39-0354)完全吻合,说明该薄膜材料中含有sns杂相。而四价锡前驱体溶液组硒化前的膜层中除了czts相外,无明显其他相存在。图2给出以上薄膜硒化后的x-射线衍射图。从图中可以看出两种条件下制备的czts薄膜在2-theta=27.1,45.0,53.4处均出现强衍射峰,这些衍射峰分别对应铜锌锡硒相(cztse)的(112),(204),(312)晶面,表明硒化后的吸光膜中均有cztse相生成,但是二价锡前驱体溶液制备的czts吸光层在2-theta=27.1,45.0,53.4处的衍射峰强度均低于四价锡前驱体溶液组,表明四价锡前驱体溶液组吸光膜层中cztse相结晶度更高。另外,由于znse和cu2snse3与cztse具有重叠的衍射峰,因此,仅仅通过xrd图谱并不能排除这些杂相的存在。图3(a)(b)、图4(a)(b)分别为二价锡前驱体溶液组与四价锡前驱体溶液组吸光膜层的截面和表面扫描电镜(sem)形貌图。由图3可以看出,二价锡前驱体溶液组膜层中晶粒尺寸较小,晶粒生长杂乱,膜层表面及膜层内部有明显杂相存在。由图4可以看出,四价锡前驱体溶液组晶粒尺寸大,生长规则,膜表面平整、致密,膜层表面及内部无杂相存在。将两组吸光膜层制备成太阳能电池器件并对其进行电池性能测试,它们的电压-电流曲线图如图5所示,相应的电池的参数总结在表1中。由四价锡前驱体溶液制备的电池的短路电流(jsc)、开路电压(voc)和填充因子(ff)分别为38.7ma/cm2,0.424v,63.9%,其光电转换效率为10.5%,而由二价锡前驱体溶液制备的电池的短路电流(jsc)、开路电压(voc)和填充因子(ff)分别为35.1ma/cm2,0.204v,37%,其光电转换效率只有2.6%。我们的结果表明前驱体溶液中锡元素的价态是制备高效率czts太阳能电池的关键,我们的发明具有广泛的应用价值。表1由二价锡(sncl2)和四价锡(sncl4·5h2o)溶液制备的czts太阳能电池的性能参数以上所述仅是本发明的优选实施方式,应当指出:对于本
技术领域
:的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1