一种液态金属无线充电线圈及其制备方法与流程

文档序号:15219202发布日期:2018-08-21 17:14阅读:342来源:国知局

本发明涉无线充电技术领域,具体涉及一种液态金属无线充电线圈及其制备方法。



背景技术:

无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(无线充电器)将能量传送至用电的装置。

无线充电器分为两个主要核心部件,一是电路模块,起变压,整流,滤波,变频,提供电源等作用,另一个核心部件为平面螺旋电感线圈,通入交流电产生感应磁场,接收模块通过电磁感应原理产生感应电流,从而为用电装置(手机)充电。

但是传统的无线充电采用铜线为电感线圈,虽然可以达到基本的充电需求,但铜线较坚硬,需要的空间大,不易携带,且较难循环利用,回收处理十分复杂且造价高,一定程度上限制了无线充电的应用场所。而现有存在的微流道液态金属线圈虽然也是运用液态金属,但是其充电效率极低,远远没有起到充电的作用,大大限制了无线充电线圈的实用性。

因此,现有技术还有待于改进和发展。



技术实现要素:

本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种液态金属无线充电线圈及其制备方法,旨在解决现有技术中系统中传统的铜线圈不易携带,且较难循环利用;而微流道液态金属线圈充电效率极低等问题。

本发明解决技术问题所采用的技术方案如下:

一种液态金属无线充电线圈,其中,所述无线充电线圈包括:设置成螺旋形的柔性管道,以及填充在所述柔性管道中的液态金属;所述柔性管道的内径横截面尺寸为1mm~4mm;所述柔性管道的两端与pcb板连接。

所述的液态金属无线充电线圈,其中,所述柔性管道为硅橡胶软管或者通过芯片技术制作而成的毫流通道。

所述的液态金属无线充电线圈,其中,所述液态金属为镓铟共金和镓铟锡合金。

所述的液态金属无线充电线圈,其中,所述液态金属无线充电线圈底部设置有用于增加线圈的磁场强度的隔磁片。

所述的液态金属无线充电线圈,其中,所述液态金属无线充电线圈设置在无线充电发射器或者无线充电接收器中。

一种液态金属无线充电线圈的制备方法,其中,所述制备方法包括:

在内径横截面尺寸为1mm~4mm的柔性管道中填充液态金属,然后盘成螺旋形线圈;

或者以芯片技术为基础用柔性材料通过软光刻硅片制作出内径横截面尺寸为1mm~4mm螺旋形柔性管道,并在封装后灌入液态金属,形成螺旋形线圈。

所述的液态金属无线充电线圈的制备方法,其中,所述在内径横截面尺寸为1mm~4mm的柔性管道中填充液态金属,然后盘成螺旋形线圈具体包括:

步骤a1、取一根管内径为1mm~4mm的硅橡胶软管,并往所述硅橡胶软管填充液态金属;

步骤b1、利用蠕动泵向所述硅橡胶软管中填充液态金属,并将所述硅橡胶软管的罐口封闭;

步骤c1、将所述硅橡胶软管盘成螺旋形,制作出液态金属无线充电线圈。

所述的液态金属无线充电线圈的制备方法,其中,所述以芯片技术为基础用柔性材料通过软光刻硅片制作出内径横截面尺寸为1mm~4mm螺旋形柔性管道,并在封装后灌入液态金属,形成螺旋形线圈具体包括:

步骤a2、将聚二甲基硅氧烷倒入预先采用光刻好的螺旋形毫流通道模型上,并在恒温65℃下固化3小时,得到具有螺旋形状且内径横截面尺寸为1mm~4mm的聚二甲基硅氧烷毫流通道;

步骤b2、在所述聚二甲基硅氧烷毫流通道的两端打孔,并使用预制的聚二甲基硅氧烷基底薄片对毫流通道贴合封装;

步骤c2、将液态金属注入所述聚二甲基硅氧烷毫流通道中,制作出液态金属无线充电线圈。

所述的液态金属无线充电线圈的制备方法,其中,所述聚二甲基硅氧烷基底薄片采用等离子清洗机处理10min。

所述的液态金属无线充电线圈的制备方法,其中,所述步骤c1或者c2之后还包括:

步骤d、将所述液态金属无线充电线圈固定在隔磁片上,并将所述液态金属无线充电线圈的两端与pcb连接,形成无线充电发射器或者无线充电接收器。

本发明的有益效果:本发明采用毫米级大尺寸的柔性管道,并在柔性管道中注入液态金属,从而制成液态金属无线充电线圈,在不影响电感值的情况下,增大了线圈的横截面,降低了线圈的直流电阻,大幅提升充电效率,减少因发热产生的能量消耗;此外,本发明的液态金属充电线圈柔性好,易弯曲折叠、方便携带、造价低并且还可回收,适用性强。

附图说明

图1是本发明采用硅橡胶软管制作液态金属无线充电线圈的较佳实施例的流程图。

图2是本发明采用硅橡胶软管制作液态金属无线充电线圈的制作过程示意图。

图3是本发明采用硅橡胶软管制作的液态金属无线充电线圈的剖面图。

图4是本发明并联硅橡胶软管制作的液态金属无线充电线圈的剖面图。

图5是本发明采用毫流通道制作液态金属无线充电线圈的较佳实施例的流程图。

图6是本发明采用毫流通道制作液态金属无线充电线圈的制作过程示意图。

图7是本发明采用毫流通道制作的液态金属无线充电线圈的剖面图。

图8是本发明并联毫流通道制作的液态金属无线充电线圈的剖面图。

具体实施方式

为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

现有的无线充电器中有一线圈,并以交流电推动而产生交流电磁场,在用电装置内有另一线圈接收交流电磁场,并转化为电能,收到的电能被用作对装置内的电池充电给对该装置供电。情况就等同将变压器的初级线圈及次级线圈分别放至充电器及用电装置内。但是传统的无线充电采用铜线为电感线圈,虽然可以达到基本的充电需求,但铜线较坚硬,需要的空间大,不易携带,且较难循环利用,一定程度上限制了无线充电的应用场所。而现有存在的微流道液态金属线圈虽然也是运用液态金属,但是其充电效率极低,远远没有起到充电的作用,大大限制了无线充电线圈的实用性。因此,为了解决上述缺陷,本发明提供一种液态金属无线充电线圈及其制备方法,所述无线充电线圈主要包括:设置成螺旋形的柔性管道,以及填充在所述柔性管道中的液态金属。

根据qi标准(qi是全球首个推动无线充电技术的标准化组织--无线充电联盟(wirelesspowerconsortium)推出的"无线充电"标准),无线充电的充电效率以q值定义,并且q值需大于一定数值才能达到充电的作用,否则电流将以其他形式做功,而q值与线圈电感值、交流电频率成正比,与线圈直流电阻成反比,其中电感值又与线圈的匝数、内径、外径、线宽、线距有关,与金属材料自身性质关系不大,在相同电感和频率下,线圈直流电阻越大,充电效率反而更小。因此,本发明的柔性管道均采用毫米级大尺寸的管道。本发明中的毫米级大尺寸具体可为1mm~4mm的柔性管道。通过采用1mm~4mm的柔性管道制成的液态金属线圈,相对于现有的小尺寸的液态金属无线充电线圈,本发明增大了液态金属线圈的横截面积,从而减小了线圈直流电阻,提高了充电效率q值,增加了本发明的液态无线充电线圈的实用性。此外,本发明采用液态金属代替传统的铜线圈,液态金属具有可流动性,高导电性等特点,除了制作成本发明的螺旋形,还可以制成多种多样的液态金属图案。所述液态金属线圈具有可弯曲,可折叠,安全无毒,方便携带,可回收等优点,且液态金属散热性较好,可减少热量产生带来的损耗。

进一步地,本发明的液态金属无线充电线圈成螺旋状,且从图2中可以看出,本发明的螺旋状设置成顺时针螺旋且线圈之间设置有一定的间隙,避免线圈之间出现耦合与干涉,提高充电效率。

对于本发明中的液态金属无线充电线圈,本发明提供两种制备方法,第一种是在内径横截面尺寸为1mm~4mm的柔性管道中填充液态金属,然后盘成螺旋形线圈;第二种是以芯片技术为基础用柔性材料通过软光刻硅片制作出内径横截面尺寸为1mm~4mm螺旋形柔性管道,并在封装后灌入液态金属,形成螺旋形线圈。具体如图1-8所示。

具体地,如图1所示,图1是本发明采用硅橡胶软管制作液态金属无线充电线圈的较佳实施例的流程图。所述在内径横截面尺寸为1mm~4mm硅橡胶软管中填充液态金属,然后盘成螺旋形线圈具体包括以下步骤:

步骤s101、取一根管内径为1mm~4mm的硅橡胶软管,并往所述硅橡胶软管填充液态金属;

步骤s102、利用蠕动泵向所述硅橡胶软管中填充液态金属,并将所述硅橡胶软管的罐口封闭;

步骤s103、将所述硅橡胶软管盘成螺旋形,制作出液态金属无线充电线圈。

具体实施时,从图2和3中可以看出,图2是本发明采用硅橡胶软管制作无线充电线圈的制作过程示意图。图3是本发明采用硅橡胶软管制作的液态金属无线充电线圈的剖面图。本发明首先取管内径为1mm,长度为1m的硅橡胶管道一根,利用蠕动泵向内填充液态金属(例如镓铟共金和镓铟锡合金),采用连通器原理,将管道两端平行对齐,然后封闭管口,即可手动弯曲螺旋成10~13圈的液态金属无线充电线圈,电阻约为0.6ω。再将液态金属无线充电线圈固定在隔磁片上,并将导线接入pcb板,即可作为无线充电发射器。本发明中的液态金属采用镓铟共金和镓铟锡合金,其导电率高且易于弯折,为制作过程提供了方便。

在具体使用过程中,对于没有自身配置无线充电接收模块的电子产品(例如有些品牌的手机可能不支持无线充电功能),需额外使用无线充电接收器,才能对该电子产品进行充电。所述无线充电接收器的结构与无线充电发射器类似,即电路模块(pcb)与平面电感线圈。因此,上述过程制作的液态金属无线充电线圈接入pcb板,同样可以作为无线充电接收器,也就是说,本发明的液态金属无线充电线圈既可以设置在无线充电发射器还可以设置在无线充电接收器中。

较佳地,为了进一步提高充电效率,本发明还可以将液态金属无线充电线圈并联使用,如图4所示,图4是本发明并联硅橡胶软管制作的液态金属无线充电线圈的剖面图。将两个或两个以上相同的液态金属无线充电线圈上下重叠并联使用,从原理上可增大磁场的磁通量变化率,极大的提高的充电效率。而本发明在液态金属无线充电线圈底部设置的隔磁片,能够有效防止能量浪费。例如,在无线充电发射器设置隔磁片能增强线圈的磁场强度,同时具有较高的磁性收敛效果;在无线充电接收器设置隔磁片,能够防止金属导体对磁场的衰减干扰,起到金属隔离的作用,防止能量浪费,提高充电效率。

上述硅橡胶管道的内径横截面尺寸仅仅只是本发明的一种较佳实施例,并不用于限定本发明,本领域技术人员可以根据需求选择毫米级且更大的尺寸进行制作线圈。此外,硅橡胶管道还可以使用其他软管代替,例如不锈钢软管、金属软管、波纹软管、橡胶软管、塑料软管。

具体地,本发明还提供另一种制备液态金属无线充电线圈的方法,即通过毫流通道制作的液态金属无线充电线圈。如图5所示,图5是本发明采用毫流通道制作液态金属无线充电线圈的较佳实施例的流程图。包括以下步骤:

步骤s201、将聚二甲基硅氧烷倒入预先采用光刻好的螺旋形毫流通道模型上,并在恒温65℃下固化3小时,得到具有螺旋形状且横截面尺寸为1mm~4mm的聚二甲基硅氧烷毫流通道;

步骤s202、在所述聚二甲基硅氧烷毫流通道的两端打孔,并使用预制的聚二甲基硅氧烷基底薄片对毫流通道贴合封装;

步骤s203、将液态金属注入所述聚二甲基硅氧烷毫流通道中,制作出液态金属无线充电线圈。

具体实施时,如图6和图7所示,图6是本发明采用毫流通道制作液态金属无线充电线圈的制作过程示意图。图7是本发明采用毫流通道制作的液态金属无线充电线圈的剖面图。本发明预先通过光刻技术在硅基模板上制作出螺旋形的管道模型,然后将聚二甲基硅氧烷(pdms)倒入光刻好的硅基模板a上,恒温65℃下固化3小时后揭下,即可制得有螺旋形线圈图案的聚二甲基硅氧烷(pdms)模板管道b。然后在线圈两个端口用1mm打孔器打孔,同时制得一片平整的聚二甲基硅氧烷(pdms)基底薄片c,所述聚二甲基硅氧烷(pdms)基底薄片c需要用等离子清洗机处理10min,随后将打好孔的管道面与等离子体处理后的平整基底薄片贴合封装成d,随后用注射器将液态金属注入d中形成e,最后在背部贴上隔磁片,并与pcb连接,从而形成无线充电发射器或者无线充电接收器。本实施例中利用聚二甲基硅氧烷(pdms)作为绝缘封装层,先利用pdms制备出符合使用规格的螺旋形毫流通道,再将液态金属注入到其中的毫流通道中,因此不需要多余的保护措施,使得本发明的液态金属无线充电线圈造价更低。并且通过设置1mm~4mm的毫流通道,增大了液态金属无线充电线圈的横截面积,从而减小了线圈直流电阻,提高了充电效率q值,

同样地,上述通过毫流通道制作的液态金属无线充电线圈同样可以并联使用,具体如图8所示,图8是本发明并联毫流通道制作的液态金属无线充电线圈的剖面图。通过将液态金属无线充电线圈并联,可有效增大磁场的磁通量变化率,极大的提高的充电效率。

通过本发明的方法,同样规格的液态金属无线充电线圈利用聚二甲基硅氧烷(pdms)或硅橡胶管道实现软性封装,无论是无线充电发射器还是无线充电接收器,都拥有重量轻、可弯曲折叠的特性。因此,对比现有的无线充电设备,本发明的液态金属无线充电线圈更方便携带,可配合移动电源实现“无线随身充”。

值得说明的是,上述聚二甲基硅氧烷(pdms)仅仅是本发明的一种较佳实施例,同样不用于限定本发明,所述聚二甲基硅氧烷(pdms)还可以由其他弹性材料代替,例如聚乙烯醇(pva)。值得说明的是,本发明中使用的液态金属、隔磁片的种类以及线圈并联的数量都做具体限制,本领域的技术人员可以根据需求进行自主设计。

本发明的液态金属无线充电线圈可以应用到生活中电子产品的方方面面,除对手机充电外,还可对如平板、笔记本电脑、电视等家用电器充电,而且据此原理,我们还开发将多个液态金属无线充电设备安装进桌布内,利用其柔软可折叠性,方便携带,铺在桌上即可为多部设备充电;还有液态金属无线充电桌子、吧台、床头柜等产品,将充电发射器与家具智能结合,减少空间,将手机随意摆放即可实现充电,方便简洁。

此外,本发明的液态金属无线充电线圈的回收处理十分简单,只要利用碱性溶液——氢氧化钠溶液,就可以对废弃的液态金属无线充电线圈进行回收处理。废弃线圈中的液态金属在氢氧化钠溶液中聚集,不产生激烈的化学反应,不使用电能、热能再次进行分离,而后处理产生的废液可集中再次处理,不会对环境产生二次污染,符合环保材料的理念。

综上所述,本发明提供的一种液态金属无线充电线圈及其制备方法,所述无线充电线圈包括:设置成螺旋形的柔性管道,以及填充在所述柔性管道中的液态金属;所述柔性管道的内径横截面尺寸为1mm~4mm;所述柔性管道的两端与pcb板连接。本发明采用毫米级大尺寸的柔性管道,并在柔性管道中注入液态金属,从而制成液态金属无线充电线圈,在不影响电感值的情况下,增大了线圈的横截面,降低了线圈的直流电阻,大幅提升充电效率,减少因发热产生的能量消耗;此外,本发明的液态金属充电线圈柔性好,易弯曲折叠、方便携带、造价低并且还可回收,适用性强。

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1