一种钠离子电池锑碳负极材料及其制备、应用方法与流程

文档序号:16052083发布日期:2018-11-24 11:22阅读:360来源:国知局

本发明涉及钠离子电池负极技术领域,具体指一种钠离子电池锑碳负极材料的合成方法和应用。

背景技术

随着新能源的不断开发和利用,大规模储能成为当今新能源技术发展的关键问题之一。无论是风能、太阳能等可再生能源的高效利用,还是基于电动车辆的未来清洁交通,均需要廉价高效的大规模储电作为技术支持。锂离子电池作为已经成功商业化的二次电池,已经广泛的应用于便携式电子产品、电动工具、轻量电动车等领域。但是,地球上的锂资源有限,将会限制锂电池在未来电动汽车及大规模储能领域的发展。因此,开发资源丰富、成本低廉的储能电池体系十分必要。

钠跟锂同属于第一主族,具有类似的化学性质,且钠资源在地球上储量丰富,提炼成本低廉。因此,钠离子电池体系在未来的大规模储能中具有良好的发展潜力和市场前景,开发高容量和高稳定性的储钠电极材料已成为当前研究的热点。

目前,关于钠离子电池正极材料已有一些容量高、循环稳定的报导,比如层状的naxmo2(m=co、fe、mn、v等)、橄榄石型的nafepo4等。但是,关于高容量、高稳定性的钠离子电池负极材料的研究仍较少,钠离子电池负极材料仍面临一系列的挑战。金属锑作为钠离子电池的负极材料,具有理论比容量高(660mahg-1),适宜的平台电位及导电性好等优点,被认为是具有良好应用前景的一类负极材料。但是,作为一种合金型的负极材料,金属锑在充放电过程中存在电极体积变化大,电极结构易破坏,进而导致电池容量急剧衰减等问题。针对以上问题,已经报道的提高锑负极性能的方法主要有两类:一是制备纳米化的金属锑或锑合金负极材料;虽然该方法在电池循环初期可以有效缓解电极的体积膨胀问题,但是随着循环的进行,金属和合金颗粒容易团聚,所制备的电池仍面临寿命短的问题;二是制备锑碳复合材料,碳基体的加入可以有效的抑制金属锑的体积膨胀,可以显著的解决电池循环稳定性差的问题。目前已经报道的锑碳复合负极材料的制备方法有球磨法、溶胶-凝胶法、静电纺丝法、喷雾干燥法等等。其中球磨法、溶胶-凝胶法和静电纺丝法存在着制备材料不均匀、生产过程能耗高、产量小、操作过程复杂等问题,不利于大规模的工业化生产。近来,少量研究采用喷雾干燥的方法来制备锑碳复合电极材料。但是,上述报道中一般采用氯化锑的溶液作为前驱体,在喷雾干燥的过程中氯化锑容易团聚成为较大的颗粒,导致所制备的锑碳复合材料中金属锑颗粒大小不均一,充放电过程中容易发生电极的损坏和电池容量的衰减。



技术实现要素:

本发明的目的在于克服现有技术存在的缺失和不足,提出一种高性能的锑碳复合负极材料的制备方法,本方法采用商品化的纳米五氧化二锑胶体溶液作为锑源,以甲醇体系溶液为前驱体,采用成熟的工业化的喷雾干燥技术,该操作过程简单,对生成设备要求较低,制备材料均匀性较好,为钠离子电池的推广提供一种可产业化的负极材料。

本发明的另一目的在于提供一种容量高、循环稳定性好的钠离子电池负极材料及钠离子电池。

为实现上述目的,本发明采用以下技术方案:

一种钠离子电池锑碳负极材料的制备方法,包括以下具体步骤:

将碳源溶解在甲醇溶液中,加入纳米五氧化二锑胶体溶液,搅拌均匀;

在一定温度下进行喷雾干燥,收集粉末即得到前驱体材料;

将上述材料在5%氢氩混合气中,高温煅烧,得到碳层包覆的锑碳负极材料。

上述方法制得的钠离子电池锑负极材料,纳米化的金属锑颗粒分布在碳球内部,形成碳层包覆的锑碳复合材料,金属锑的直径为12~15nm。

上述钠离子电池锑碳负极的制备方法,所述碳源包括聚乙二醇2000、聚苯胺、三聚氰胺、蔗糖、葡萄糖、聚乙烯吡咯烷酮等。上述钠离子电池锑碳负极的制备方法,所述碳源的质量为1~5g。上述钠离子电池锑碳负极的制备方法,所述纳米五氧化二锑胶体溶液的质量为10~20g。

上述钠离子电池锑碳负极的制备方法,所述喷雾干燥的温度为300~600℃。

上述钠离子电池锑碳负极的制备方法所述煅烧温度为300~600℃。

上述钠离子电池锑碳负极的制备方法,所述煅烧时间为1~5h。

本发明一种钠离子电池锑碳负极材料的钠离子电池的组装具体步骤如下:

将锑碳复合负极材料、乙炔黑和羧甲基纤维素钠按照70∶15∶15质量比进行研磨,后加入适量去离子水研磨成浆;

用刮刀将浆料均匀涂覆在铜箔的表面在70℃下真空干燥8h;

在充满氩气的手套箱中进行钠离子电池的组装,采用金属钠为对电极和参比电极、含有1mol/l高氯酸钠溶液(其中溶剂为体积比为1∶1的碳酸丙烯酯和碳酸乙烯酯的混合溶液,添加5%氟代碳酸乙烯酯作为添加剂)为电解液、玻璃纤维为隔膜,进行组装。

上述钠离子电池锑碳负极材料的钠离子电池的组装方法,所述加入去离子水的量为100~400μl/mg。

本发明与现有钠离子电池合金锑负极材料相比,具有以下优点及突出效果:

本发明所使用的化学试剂均为商品化试剂、廉价易得,如纳米五氧化二锑胶体溶液作为锑源,以甲醇体系溶液为前驱体。与目前其他方法制备的合金锑负极材料相比,采用成熟的工业化的喷雾干燥技术,该操作过程简单,对生成设备要求较低,制备锑碳负极材料中的碳球直径大小较为均一,纳米化的金属锑颗粒分布在碳球内部,形成碳层包覆的锑碳复合材料。通过电化学测试表明,该复合结构的电极材料可有效的降低锑负极材料在钠离子电池充放电过程体积变化大的问题,缓解电极结构破坏,使得钠离子电池保持较高的比容量和较稳定的循环性能。

附图说明

图1为实施例1所制备的锑碳复合材料的投射电镜图;

图2为实施例1、2、6、10所制备锑碳复合材料的x射线扫描图谱;

图3为实施例1所制得钠离子电池锑负极材料组装成cr2032扣式电池在100mag-1电流密度下的充放电曲线图;

图4为实施例1所制得钠离子电池锑负极材料组装成cr2032扣式电池在100mag-1电流密度下的充放电循环测试图。

具体实施方式

下面结合附图和实施例对本发明作进一步描述

实施例1

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料(如附图1所示),从图中可以看出纳米锑的颗粒被碳材料包覆其中,形成良好的球形复合结构。复合材料x射线衍射图谱无定形碳及金属锑的特征峰(如附图2所示),表明锑碳复合材料的成功制备。

实施例2

将1g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例3

将2g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例4

将3g聚苯胺作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例5

将3g三聚氰胺作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例6

将3g蔗糖作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例7

将3g葡萄糖作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例8

将3g聚乙烯吡咯烷酮作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h得到碳层包覆的锑碳负极材料。

实施例9

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入10g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例10

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入20g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例11

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在300℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例12

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在350℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例13

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在400℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例14

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在500℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例15

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在550℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例16

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在600℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例17

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,300℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例18

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,350℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例19

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,400℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例20

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,500℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例21

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,550℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例22

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,600℃温度环境中煅烧3h,得到碳层包覆的锑碳负极材料。

实施例23

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,450℃温度环境中煅烧1h,得到碳层包覆的锑碳负极材料。

实施例24

将3g聚乙二醇2000作为碳源溶于20ml甲醇溶液中,加入15g纳米五氧化二锑胶体溶液,搅拌均匀。在450℃温度条件下进行喷雾干燥,收集粉末即得到前驱体材料。将上述材料在5%氢氩混合气中,550℃温度环境中煅烧2h,得到碳层包覆的锑碳负极材料。

本发明一种钠离子电池锑碳负极材料应用实施例

称取实施例1制得的一定量锑碳材料样品,将锑碳复合材料、乙炔黑和羧甲基纤维素钠按照70∶15∶15质量比进行研磨,后加入适量去离子水研磨成浆;用刮刀将浆料均匀涂覆在铜箔的表面,在70℃下真空干燥8h;在充满氩气的手套箱中进行钠离子电池的组装,采用金属钠为对电极和参比电极、含有1mol/l高氯酸钠溶液(其中溶剂为体积比为1:1的碳酸丙烯酯和碳酸乙烯酯的混合溶液,添加5%氟代碳酸乙烯酯作为添加剂)为电解液、玻璃纤维为隔膜,进行电池组装。

经过电化学测试,本发明制备的锑负极材料比容量较高,接近金属锑的理论比容量。锑碳复合电极经过第一次放电后,在接下来的第2、5、10和50次的充放电测试中表现出良好的稳定性(如附图3所示)。

由碳层包覆的锑碳复合材料组装成钠离子电池的充放电循环图(如附图4所示),可以看出采用喷雾干燥制备的锑负极材料第二次充放电比容量超过600mahg-1,经过50、100、150次充放电测试,其比容量分别为540、518、484mahg-1。从图中可知本发明制备的锑负极材料的循环稳定,经过150次充放电测试比容量能够保持484mahg-1,保持首次充放电比容量的80%,并且库伦效率超过97%。

综上所述,本发明一种钠离子电池锑碳负极材料及其制备、应用方法与现有钠离子电池合金锑负极材料相比,具有以下优点及突出效果:

首先,本发明所使用的化学试剂均为商品化试剂、廉价易得,如纳米五氧化二锑胶体溶液作为锑源,以甲醇体系溶液为前驱体,包括聚乙二醇2000等为碳源。

其次,与目前其他方法制备的金属锑负极材料相比,采用成熟的工业化的喷雾干燥技术,该操作过程简单,对生成设备要求较低,制备锑负极材料中的碳球直径大小较为均一,纳米化的金属锑颗粒分布在碳球内部,形成碳层包覆的锑碳复合材料。

再次,通过电化学测试表明,该复合结构的电极材料可有效的降低锑负极材料在钠离子电池充放电过程体积变化大的问题,缓解电极结构破坏,使得钠离子电池保持较高的比容量和较稳定的循环性能。

最后,钠离子电池体系在未来的大规模储能中具有良好的发展潜力和市场前景,同时鉴于钠跟锂同属于第一主族,具有类似的化学性质,且钠资源在地球上储量丰富,提炼成本低廉。结合本发明为开发资源丰富、成本低廉,开发高容量和高稳定性的储能电池体系提供坚实的技术物质基础。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1