用于半导体封装中改善的分层特性的系统和方法与流程

文档序号:18873274发布日期:2019-10-14 20:01阅读:614来源:国知局
用于半导体封装中改善的分层特性的系统和方法与流程

本申请要求于2017年4月25日提交的共同拥有的美国临时专利申请号62/489,869的优先权,该申请出于所有目的据此全文以引用方式并入。

本公开涉及半导体制造,例如,涉及在半导体封装中提供改善的分层特性的系统和方法(例如,通过在管芯附接工艺中减少环氧树脂放气来提供减少的或消除的引线框引线和/或dap区域的分层)。



背景技术:

许多常规集成电路(“ic”)封装在暴露于某些环境条件一段时间后经受分层。例如,许多ic封装在168小时的持续时间内在85℃&85%湿度的湿度负荷要求之后经历分层,如由jedecmsl(“湿度敏感等级”)测试所指定的。如本文所用,“分层”可指引线框的区域(在一些装置中可为镀银的)与相邻的结构或材料(例如,模塑化合物或管芯/ic芯片)之间的分离,其可由例如引线框与相邻结构或材料之间的不良粘合力造成。分层可影响ic封装,从而导致可靠性测试期间的封装和引线键合缺陷,诸如当将应力施加到封装件时,例如由于水分、温度或湿度。分层也可导致产品失磁故障,诸如引线键合断裂或剥离。

因此,需要减少或消除ic封装(例如,soic(小外形集成电路)封装)中的引线框分层。仅作为示例,需要在8引线soic(soic-8)和28引线soic(soic-28)半导体器件外壳中减少或消除引线框分层,例如内引线分层。jedec要求(jedecj-std-020e)要求在msl1下使用钯涂覆的铜线在引线键合区域上进行零分层,该等级指示器件不是湿度敏感的。部件必须在允许的一段时间(袋外落地寿命)内安装和回流。减少或消除引线指分层的一种方法是将器件降级至msl3,该等级限定在将器件装配在pcb上之前暴露于环境条件最多一周。然而,这通常给部件增加大量成本,并且在从防潮袋中取出部件时需要由客户对部件进行特殊处理。



技术实现要素:

例如,许多ic封装诸如soic(小外形集成电路)封装在封装资格测试期间遭受引线框分层,例如内部引线分层。本发明人已确定,此类引线分层的一个重要原因是由管芯附接工艺产生的环氧树脂放气,其中环氧树脂沉积在引线框焊盘上,并且ic管芯安装在引线框焊盘的环氧树脂覆盖区域上,从而将管芯固定到引线框。

本发明提供了减少或消除由管芯附接工艺产生的环氧树脂放气引起的引线分层的系统和方法。在一些实施方案中,使用此类系统和/或方法生产的soic封装可符合具有零引线分层的cupdau线。这可增大成本节约并使用cupdau线生产高质量的产品。

在一些实施方案中,通过例如使用在管芯附接单元处提供的加热装置在管芯附接工艺期间或结合管芯附接工艺通过加热环氧树脂来减少环氧树脂放气。加热环氧树脂可在环氧反应中实现附加交联,这可因此减少来自环氧树脂的放气,这继而可减少或消除随后的引线分层。在一些实施方案中,加热装置用于在管芯附接工艺期间或结合管芯附接工艺将环氧树脂加热至55℃±5℃的温度。

一个实施方案提供了用于制造集成电路器件的方法,该集成电路器件包括安装在引线框的管芯支撑区域上的集成电路芯片,其中该方法包括:(a)执行管芯附接工艺以形成集成电路结构,该管芯附接包括将环氧树脂沉积在引线框的管芯支撑区域的至少一部分上,以及将集成电路芯片安装在环氧树脂覆盖的区域上,使得环氧树脂的一部分在集成电路芯片的外周边的外部横向延伸,以及在安装步骤期间使用加热装置施加热量;(b)在管芯附接工艺之后,在集成电路结构上执行管芯附接固化工艺;(c)执行引线键合工艺以将至少一个线键合到集成电路结构;和(d)施加模塑材料以至少部分地包封集成电路结构。

在一个实施方案中,加热步骤包括加热环氧树脂以在环氧反应中实现附加交联,并且与根据类似的生产工艺但在没有管芯附接加热步骤的情况下生产的集成电路器件相比,减少了来自环氧树脂的放气。

在一个实施方案中,加热步骤被构造成与根据类似的生产工艺但在没有管芯附接加热步骤的情况下生产的集成电路器件相比将来自环氧树脂的放气量度降低至少三倍。

在一些实施方案中,加热步骤包括使用加热装置将环氧树脂加热至55℃±15℃的温度。在一些实施方案中,加热步骤包括使用加热装置将环氧树脂加热至55℃±10℃的温度。在一些实施方案中,加热步骤包括使用加热装置将环氧树脂加热至55℃±5℃的温度。在一些实施方案中,加热步骤包括使用加热装置将环氧树脂加热至约55℃的温度。

在一个实施方案中,管芯附接工艺包括:使用进给装置将引线框运送到环氧树脂分配工位;在环氧树脂分配工位处,将环氧树脂沉积在引线框的管芯支撑区域上;使用进给装置将具有沉积环氧树脂的引线框运送到芯片安装工位,该芯片安装工位具有相关加热器;以及在芯片安装工位处:将集成电路芯片安装在环氧树脂覆盖的管芯支撑区域上,并且使用加热器将热量施加到至少环氧树脂以在环氧反应中实现附加交联并减少来自环氧树脂的放气。

另一个实施方案提供了一种用于制造集成电路器件的系统,该系统包括:被构造成将引线框定位在机器进给器上的加载单元,引线框包括管芯支撑区域和多个引线;机器进给器,其被构造成将引线框递送到环氧树脂分配单元和管芯附接单元;其中环氧树脂分配单元被构造成将环氧树脂沉积在引线框的管芯支撑区域的至少一部分上;并且其中管芯附接单元包括安装单元,该安装单元被构造成将集成电路芯片安装在环氧树脂覆盖的管芯支撑区域上,以及管芯附接加热单元,该管芯附接加热单元被构造成将热量施加到至少环氧树脂以在环氧反应中实现附加交联并减少来自环氧树脂的放气。

在一个实施方案中,管芯附接加热单元被构造成与在不结合管芯附接来加热环氧树脂的情况下生产的集成电路器件相比,减少来自环氧树脂的放气。

在一个实施方案中,管芯附接加热单元被构造成与在不结合管芯附接来加热环氧树脂的情况下生产的集成电路器件相比将来自环氧树脂的放气量度降低至少三倍。

在一个实施方案中,管芯附接加热单元被构造成将环氧树脂加热至约55℃的温度。

在一个实施方案中,管芯附接加热单元被构造成将环氧树脂加热至55℃±10℃的温度。

在一个实施方案中,管芯附接加热单元被构造成将环氧树脂加热至55℃±5℃的温度。

附图说明

下文结合附图描述了本公开的示例性方面,其中:

图1示出了根据一个示例性实施方案的用于生产具有改善的引线分层特性(例如,减少的或消除的引线分层)的集成电路(ic)器件/封装的示例性组装工艺。

图2示出了根据一个实施方案的用于促进加热管芯附接工艺的示例性系统,例如使用图1所示的示例性工艺。

图3示出了根据一个实施方案的引线框推进穿过环氧树脂分配装置,然后是具有相关加热器以用于提供加热管芯键合工艺的拾取和放置装置的示例性实施方案。

图4示出了根据一个实施方案的用于使用本文所公开的系统和方法(包括在管芯附接之前、期间和/或之后加热管芯附接环氧树脂)形成的示例性多批ic封装的示例性可靠性测试流程。

图5a和图5b示出了根据常规技术形成的示例性ic封装(图5a)与使用本文所公开的系统和方法形成的示例ic封装(图5b)之间的差异,例如,包括在管芯附接之前、期间和/或之后加热管芯附接环氧树脂。

具体实施方式

图1示出了根据一个示例性实施方案的用于生产具有改善的引线分层特性(例如,减少的或消除的引线分层)的集成电路(ic)器件/封装的示例性组装工艺100。可通过将加热步骤添加到管芯附接(d/a)工艺来改善所得ic封装的引线分层特性。在102处,执行管芯附接(d/a)工艺以将集成电路管芯(例如芯片)附接到引线框。可将引线框加载到机器进给器(例如,移动带或轨道)上,并将其递送到环氧树脂分配单元。在104处,环氧树脂分配单元可将环氧树脂沉积在引线框的上表面的至少一部分上,例如,在被构造成接收ic管芯的引线框焊盘的一部分上。

然后机器进给器可将环氧树脂覆盖的引线框递送至管芯键合单元,该管芯键合单元可包括管芯安装装置和加热装置。在106处,管芯安装装置将管芯安装到引线框焊盘的环氧树脂覆盖区域上,并且加热装置108加热环氧树脂区域以在环氧反应中实现附加交联,这可从而减少来自环氧树脂的放气,这继而可减少或消除来自所生产的ic封装的引线分层。加热装置108可在将ic芯片安装到环氧树脂覆盖的引线框焊盘之前、期间和/或之后工作。在一些实施方案中,在106处,加热装置108可在管芯附接工艺期间或结合管芯附接工艺将环氧树脂加热至约55℃或55℃±10℃或55℃±5℃的温度。

在110处,可随后通过加载装置将引线框和ic芯片结构加载到盒中,以完成管芯附接工艺。然后可使用任何已知的技术在112处对结构进行管芯附接固化。然后可在114处执行引线键合工艺,例如,以将ic芯片连接到邻近引线框焊盘的一个或多个引线框引线。在一些实施方案中,可使用cupdau键合线。然后可在116处将模塑化合物施加到ic结构上,例如以至少部分地包封该结构,并且可使用任何已知的技术进行后模制固化(pmc)工艺。然后可在118处标记可包括任意数量的引线框和ic芯片的ic结构,并且在120-112处切割以提供多个分立的ic封装。

图2示出了根据一个实施方案的用于例如使用上述方法100促进加热管芯附接工艺的示例性系统100。系统100可包括输入/加载机202、机器进给器204和输出/卸载机206。输入/加载机202可被构造成将引线框230加载到自动传送装置或轨道210上,该自动传送装置或轨道可将引线框230传送到机器进给器204。引线框230可包括管芯焊盘232和多个引线指234。在一些实施方案中,每个引线指234的顶表面例如每个引线指234的尖端区域236或一个或多个其他区域可通过粗化工艺进行银涂覆和/或物理粗化,例如,以增强随后沉积的模塑化合物与引线框230之间的键合。

机器进给器204可包括环氧树脂分配装置212和拾取和放置装置214。环氧树脂分配装置212可将环氧树脂216分配到引线框焊盘232上。然后可将引线框230推进到拾取和放置装置214,该拾取和放置装置可拾取集成电路(ic)芯片或管芯250并将其放置到引线框焊盘232的环氧树脂覆盖部分上,从而将ic管芯250键合到焊盘232。

加热器220可设置在该管芯键合工艺的位置处或附近,例如体现为与拾取和放置装置214一体或分开。加热器220可被构造成在将ic管芯250通过拾取和放置装置214安装到环氧树脂覆盖的引线框焊盘232之前、期间和/或之后加热环氧树脂216,以改善基于环氧树脂的管芯附接键合。例如,加热管芯键合可在环氧反应中实现附加交联,这可因此减少来自环氧树脂的放气,这继而可减少或消除来自所生产的ic封装的引线分层。加热器22可将环氧树脂216加热至任何合适的温度以改善环氧树脂键合的一个或多个特性。例如,在一些实施方案中,加热器22可在管芯附接工艺或结合管芯附接工艺将环氧树脂216加热至约55℃或55℃±15℃或55℃±10℃或55℃±5℃的温度。

加热器220可包括适于直接或间接加热引线框管芯焊盘232上的环氧树脂216的任何系统或装置,例如对流加热器、辐射加热器、加热电缆、强制空气加热器或物理地耦接到(例如,在管芯焊盘232处的)引线框230的导电加热器。加热器220可由电、天然气、丙烷、太阳能或任何其他能量源供电。

在加热管芯附接工艺之后,具有被指示为键合单元240的所附接的和环氧树脂键合的ic芯片250的引线框230可在轨道210上被推进到输出/卸载装置206,该输出/卸载装置可卸载键合单元240以用于进一步加工,例如通过模塑化合物包封。

图3示出了引线框230推进穿过环氧树脂分配装置212,然后是具有相关加热器220以用于提供加热管芯键合工艺以在将ic芯片250安装至引线框焊盘232之前、期间和/或之后加热环氧树脂216的拾取和放置装置214的示例性实施方案。在图3所示的示例性实施方案中,加热器220位于管芯键合部位处。例如,加热器22可被布置在轨道210的区段210a和210b之间的开口处,该轨道将引线框230运送并推进穿过管芯附接系统。轨道区段210a可将引线框230推进穿过环氧树脂分配装置212,其中大量环氧树脂216被沉积到引线框焊盘232上,然后到达引线框焊盘232在加热器220上对齐的位置,如图3所示。在该位置处,加热器220可加热环氧树脂216(例如,至约55℃或55℃±15℃或55℃±10℃或55℃±5℃的温度),并且拾取和放置装置214可将ic芯片250安装到引线框焊盘232的环氧树脂覆盖区域上。加热器220可被(例如,自动地或手动地)控制,以在将ic管芯250通过拾取和放置装置214物理地安装到引线框焊盘232之前、期间和/或之后加热环氧树脂216。

在其他实施方案中,加热器220可被布置在轨道210的连续区段下方,并且布置在管芯键合部位处。在其他实施方案中,加热器220可被布置在引线框230上方。例如,加热器220可被布置在引线框焊盘232上方并且横向偏移,以为拾取和放置装置214将管芯250安装到焊盘232提供空间。

在其他实施方案中,加热器220可被布置在键合部位的上游。例如,加热器220可在键合部位上游的位置处位于轨道210上方、下方或集成在轨道中。轨道210可将引线框焊盘232推进到加热器220正上方或正下方的位置,其中加热器220可被操作以将环氧树脂216加热至目标温度。然后,轨道210可将具有加热环氧树脂216的引线框推进到键合部位,其中拾取和放置装置214可随后将管芯250安装到焊盘232上的加热环氧树脂216上。

图4示出了用于使用本文所公开的系统和方法例如包括在管芯附接之前、期间和/或之后加热管芯附接环氧树脂形成的示例性多批ic封装的示例性可靠性测试流程400。在402处,执行一批ic封装的扫描声学成像(sam)。在404处,将该批次在150℃下烘焙24小时。在406处,在85℃和85%相对湿度下对该批次进行168小时的水分吸收。在408处,使该批次在260℃下经受3x回流。该批次随后通过sam成像并检查分层或其它缺陷。

表1示出了例如使用本文所公开的并根据图4所示的工艺400所测试的系统和方法形成的示例性多批ic封装的相关参数。

表1.关于被测ic封装的参数

表2示出了由表1中的信息表征并且根据图4所示的工艺400所测试的六批ic封装的测试结果。如图所示,在测试流程之后,所有批次均未显示出分层。

表2.ic封装结果

图5a和图5b示出了根据常规技术形成的示例性ic封装500a(图5a)与使用本文所公开的系统和方法形成的示例ic封装500b(图5b)之间的差异,例如,包括在管芯附接之前、期间和/或之后加热管芯附接环氧树脂。每个示例性ic封装500a,500b包括引线框502,该引线框包括管芯焊盘504和引线指506,以及通过环氧树脂514a,514b安装到引线框焊盘504的ic管芯/芯片510。如图5a所示,在常规ic封装500a中,环氧树脂放气512a的平均距离(超过环氧树脂514a的外边缘)可为大约或大于环氧树脂渗出的平均距离的3x。相比之下,如图5b所示,在根据本发明的示例性ic封装500b中,环氧树脂放气512b的平均距离(超过环氧树脂514b的外边缘)可小于环氧树脂渗出的平均距离的1x。

尽管本公开详细描述了所公开的实施方案,但应当理解,在不脱离本发明的实质和范围的情况下,可对本实施方案做出各种改变、替换和更改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1