毫米波传输线架构的制作方法

文档序号:22557499发布日期:2020-10-17 02:42阅读:170来源:国知局
毫米波传输线架构的制作方法

相关应用的交叉引用

本申请根据35u.s.c.s119(e)主张2018年6月29日提交的题为“毫米波传输线架构(millimeterwavetransmissionlinearchitecture)”的共同待决的美国临时专利申请no.62/691,810、2017年11月10日提交的题为“螺旋天线及相关制造技术(spiralantennaandrelatedfabricationtechniques)”的美国临时专利申请no.62/584,260、2017年11月10日提交的题为“增材制造技术(amt)薄型辐射器(additivemanufacturingtechnology(amt)lowprofileradiator)”的美国临时专利申请no.62/584,264、2017年11月10日提交的题为“薄型相控阵列(lowprofilephasedarray)”的美国临时专利申请no.62/584,300、2018年2月28日提交的题为“snap-rf互连(snap-rfinterconnections)”的美国临时专利申请no.62/636,364、及2018年2月28日提交的题为“增材制造技术(amt)薄型信号分配器(additivemanufacturingtechnologytechnology(amt)lowprofilesignaldivider)”的美国临时专利申请no.62/636,375的权益,上诉文献基于所有目的以其全文通过引用合入本文中。



背景技术:

可使用常规的打印电路板(pcb)工艺来制造射频(rf)和电磁电路。常规的pcb制造工艺可包括层压、电镀、掩模、蚀刻及其他复杂的工艺步骤,并且可需要多个步骤、昂贵和/或有害的材料、多次反复、大量人工等,所有这些都会导致更高的成本和更慢的周转时间。另外,常规的pcb制造工艺在允许诸如传输线(例如,带状线)尺寸、以及多个导体(例如,电介质厚度、通孔间的间距(inter-viaspacing)等)之间的电介质材料的尺寸这样的小的特征尺寸方面的能力有限,从而限制了这样的电路可支持的最高频率信号的范围。



技术实现要素:

本文描述的各方面和实施例提供简化的电路结构及其制造方法,该电路结构用于在电路内传送电信号,尤其是射频信号。根据本文描述的电路的电路的各种实施例可由例如层压板或介电基板构成,并且可以在它们之间具有电路特征、信号层、接地平面、或其他电路结构。此外,与常规技术相比,可更简单地制造各种信号导体和电路结构并且具有更小的特征尺寸。这样的电路结构适合于进入毫米波范围的更高频率以及常规微波范围内的操作。本文描述的电路、结构和制造方法使用减材和增材制造技术来实现更小尺寸和更高频率的操作。

本申请的一个方面针对于一种射频电路,所述射频电路包括:第一介电基板,其具有第一表面;第二介电基板,其具有第二表面,所述第一介电基板和所述第二介电基板被相对于彼此定位,使得所述第二表面朝向所述第一表面;传输线,其由设置在所述第一表面上的导电包覆层形成,所述传输线被至少部分地包封在所述第一介电基板和所述第二介电基板之间;以及一对基准导体,所述一对基准导体中的每一个被定位成与所述传输线相邻并共面并且相互间隔,使得在所述一对基准导体中的每一个和所述传输线之间存在间隙,所述一对基准导体中的每一个被设置在所述第一表面或所述第二表面上并且被至少部分地包封在所述第一介电基板和所述第二介电基板之间。

射频电路的实施例还可包括一对接地平面,所述一对接地平面中的每一个均被定位为基本上平行于所述传输线和所述一对基准导体的所述共面布置。所述射频电路还可以包括一对边界壁,所述一对边界壁被设置为基本上垂直于所述一对接地平面以及所述传输线和所述一对基准导体的共面布置,所述一对边界壁是电连续的并且与所述一对接地平面电接触,使得所述一对边界壁和所述一对接地平面在至少两个维度上围绕所述传输线形成导电电磁边界。所述一对边界壁可与所述一对基准导体电接触。所述射频电路还可包括电导体,所述电导体被设置为穿过所述第一介电基板和所述第二介电基板中的至少一个中的孔,所述电导体与所述传输线电接触。所述射频电路还可包括与所述电导体电接触并且被配置为经由所述电导体向所述传输线发送电磁信号或从所述传输线接收电磁信号的电气部件,所述电气部件是端子、连接器、电缆和电磁辐射器中的至少一个。所述传输线可在70ghz下产生每英寸1.2分贝或更低的插入损耗。所述一对基准导体可由被设置在所述第一基板上的所述导电包覆层形成。

本申请的另一方面针对于一种制造电磁电路的方法。在一个实施例中,所述方法包括:提供第一介电基板,所述第一介电基板具有设置在其第一表面上的导电包覆层;机加工(machining)导电包覆层以移除导电包覆层的一部分以形成传输线,所述被移除的部分在所述传输线和所述导电包覆层的剩余部分之间形成间隙,所述导电包覆层的所述剩余部分中的至少一些在传输线的任意侧(eitherside)形成一对基准导体,并且与所述传输线共面;以及提供具有第二表面的第二介电基板,并且定位所述第二介电基板使得所述第二表面朝向所述第一表面,从而至少部分地包封在所述第一介电基板和所述第二介电基板之间的所述传输线和所述一对基准导体。

所述方法的实施例还可包括:向所述第一介电基板提供被设置在第三表面上的第一接地平面,所述第三表面是与所述第一表面相反且基本上平行的表面;以及为所述第二介电基板提供被设置在第四表面上的第二接地平面,所述第四表面是与所述第二表面相反且基本上平行的表面,所述第一接地平面和所述第二接地平面中的每一个基本上彼此平行并且与所述传输线和所述一对基准导体的共面布置相平行。所述方法还可包括机加工所述第一介电基板和所述第二介电基板以形成穿过所述第一介电基板和所述第二介电基板的沟槽,所述沟槽在所述第一接地平面和所述第二接地平面之间延伸并且基本垂直于所述第一接地平面和所述第二接地平面;以及采用导电材料填充所述沟槽,所述导电材料被布置为与所述第一接地平面和所述第二接地平面中的每一个电接触。所述导电材料还可被布置为与所述一对基准导体电接触。所述方法还可包括:在所述第一基板介电基板和所述第二基板介电基板中的至少一个中钻孔,以提供到所述传输线的一部分的通道(access);以及提供被设置成穿过所述孔的电导体,所述电导体被布置为与所述传输线电接触。所述方法还可包括将所述电导体电耦接到电气部件,从而所述电导体被配置为在所述传输线与所述电气部件之间传送信号,所述电气部件是端子、连接器、电缆和电磁辐射器中的至少一个。所述方法还可包括将具有在24ghz至75ghz范围内的频率的电磁信号传送到所述传输线。

本申请的又一方面针对于一种传输线组件,其包括:一对基板介电基板;电导体,其被至少部分嵌入所述一对介电基板之间;一对基准导体,所述基准导体被至少部分地嵌入所述一对介电基板之间,并且被定位成与所述电导体共面并且与所述电导体相隔开一间隙;一对接地平面,所述一对接地平面中的每一个均被设置为邻近所述一对介电基板中的一个的外表面,并且所述一对接地平面中的每一个基本上彼此平行并且与所述电导体和所述一对基准导体的共面布置基本上平行;以及一对电磁边界,该电磁边界由被设置为穿过所述一对介电基板的电连续导体形成,所述电磁边界基本上在所述一对接地平面之间延伸并且与所述一对接地平面电连通。

所述传输线组件的实施例还可包括电耦接到所述电导体的第一端部的第一电气部件和电耦接到所述电导体的第二端部的第二电气部件,所述电导体被配置为在所述第一电气部件和所述第二电气部件之间传送大于24ghz的电磁信号。所述一对电磁边界可与所述一对基准导体电连通。所述电导体可以是第一电导体,并且还包括与所述第一电导体电连通的第二电导体,所述第二电导体被设置为穿过所述一对介电基板中的至少一个。传输线组件还可包括电气部件,所述电气部件与所述第二电导体电接触并且被配置为经由所述第二电导体向所述第一电导体发送电磁信号或从所述第一电导体接收电磁信号,所述电气部件是端子、连接器、电缆和电磁辐射器中的至少一个。

下面将详细讨论其他方面、示例和优点。本文公开的实施例可以以与本文公开的原理中的至少一个一致的任何方式与其他实施例组合,并且对“实施例”、“一些实施例”、“一个替代实施例”、“各种实施例”、“一个实施例”等的引用不一定是互斥的,而是意在表明所描述的特定特征、结构或特性可被包括在至少一个实施例中。本文出现的此类术语不一定都指同一实施例。本文描述的各个方面和实施例可包括用于执行任何所描述的方法或功能的手段。

附图说明

下面参考附图讨论至少一个实施例的各个方面,这些附图并非旨在按比例绘制。包括附图被包括以提供对各个方面和实施例的说明和进一步的理解,并且这些附图被结合在本说明书中并构成本说明书的一部分,但不旨在作为对本申请的限制的定义。在附图中,在各个附图中示出的每个相同或几乎相同的部件可由相同的数字表示。出于清楚的目的,并非每个部件都可在每个图中被标记。在图中:

图1是包括法拉第壁的电磁电路部分的示例的示意图;

图2是图1的电磁电路部分的一个制造阶段的示意图;

图3是图1的电磁电路部分的另一制造阶段的示意图;

图4是图1的电磁电路部分的另一制造阶段的示意图;

图5是图1的电磁电路部分的另一制造阶段的示意图;

图6是图1的电磁电路部分的另一视图的示意图;以及

图7是制造传输线的方法的流程图。

具体实施方式

本文描述的各方面和示例在用于容纳和传送毫米波信号的各种电路内为信号导体(例如,传输线、信号迹线、带状线)提供了基准表面以及导体。本文描述的传输线结构有效地分配信号电流,同时保持特征阻抗并使沿传输线的信号损耗最小化。本文描述的传输线结构适用于包括射频电路实施例在内的各种电路板制造,并且有利地应用减材和增材制造技术。这样的技术可提供能够传送和容纳微波和毫米波范围(例如,从28ghz到70ghz,以及高至300ghz或更高)内的射频信号的结构。

常规的传输线架构严重依赖于中心导体,结果在中心导体上产生了显著的射频电流集中。由此产生的电流集中和与频率相关的趋肤效应相结合,产生与频率相关的指数增长的插入损耗。结果,常规的传输线产生显著的损耗,并且当在较高频率下使用时,例如在毫米波范围内使用时,开始无法达成其传送射频能量的目的。波导也被认为是一种可能的常规方法,但是其在例如e平面壁上也呈现高电流密度。

根据本文描述的结构和方法的传输线架构通过在更大的表面区域上分配射频电流克服了上述限制因素,使得在适应固有趋肤效应的同时克服了信号损耗机制。在各种实施例中,本文描述的传输线架构保持横向电磁(tem)波传播的特征,其具有线性弥散、低插入损耗和固定的特征阻抗。该几何形状使用多个导电表面、以及将电场定向为与该导电表面正交的配置。根据本文所述的传输线和方法,结合接地平面(例如,水平)和其他法拉第边界(例如,垂直),在三个主要导体上分布信号电流。

在一些实施例中,可以通过从基板表面机加工掉(例如,铣削)包覆层(例如电镀铜)的一部分而在介电基板上形成传输线(例如,导体)。

在一些实施例中,导线可在电路内的多个层之间(例如,到传输线/来自传输线)“垂直”传送信号,并且可被用于将信号馈送到各种其他层或电路部件或馈送来自各种其他层或电路部件的信号,电路部件为诸如波导、辐射器(例如,天线)、连接器或其他电路结构。这样的“垂直”层间信号馈送可通过以下方式形成:在一个或多个介电基板中机加工一个孔,将焊料施加到一个或多个导体表面、将一段导线(例如,铜线)插入所述孔中,并且将焊料回流以机械和电气地确保连接。

在一些实施例中,可通过机加工沟槽并采用导体填充沟槽(例如使用3d打印技术施加的导电油墨)在一个或多个介电基板中形成连续的导电结构,以形成电磁边界。这样的电磁边界可执行电磁信号的边界条件,以例如控制或限制信号的模式和/或特征阻抗,或者可提供隔离以将信号约束在电磁电路的区域,例如法拉第边界,以防止在电路的一个区域的信号而影响电路的另一个区域,例如屏蔽。

本文所述的制造工艺可特别适合于使用适合的减材(例如,机加工、铣削、钻孔、切割、冲压)和增材(例如,填充、流动、3d打印)制造设备来制造具有物理上小的特征的电路结构,所述电路结构能够支持例如在8至75ghz或更高的范围内的电磁信号以及高达300ghz或更高的电磁信号。根据本文描述的系统和方法的电磁电路结构可特别适合于在28至70ghz系统中的应用,包括毫米波通信、传感、测距等。所描述的各方面和实施例也可适合于较低的频率范围,例如在s波段(2-4ghz)、x波段(8-12ghz)、或其他频率范围。

应当理解的是,本文讨论的各方法和装置的实施例在应用上不限于在以下描述中阐述的或在附图中示出的部件的构造和布置的细节。这些方法和装置能够在其他实施例中实现,并且能够以各种方式实施或执行。本文提供的具体实施方式的示例仅用于说明目的,而不旨在进行限制。此外,本文所使用的措词和术语是出于描述的目的,并且不应被视为进行限制。本文使用的“包括”、“包含”、“具有”、“含有”、“涉及”及其变体意在涵盖其后列出的项目及其等同物以及附加项目。对“或”的引用可被解释为包含性的,因此,使用“或”描述的任何术语可以表示描述的术语中的单个、多于一个以及所有的任何一项。对前部和后部、左侧和右侧、顶部和底部、上部和下部、端部、侧面、垂直和水平等的任何引用都是为了便于描述,而不是将本系统和方法或其部件限制在任何一个位置或空间方向。

除非上下文明确声明和/或特别指出,否则本文所使用的术语“射频”并不旨在被限于特定的频率、频率范围、频带、频谱等。类似地,对于任何特定的实施方式,术语“射频信号”和“电磁信号”可互换使用,并且可指用于信息承载信号的传播的各种适合频率的信号。这样的射频信号通常可在低端由千赫兹(khz)范围内的频率约束,并在高端由高至数百千兆赫(ghz)的频率约束,并且明确地包括微波或毫米波范围内的信号。通常,根据本文所述的系统和方法可以以低于光学领域中进行常规处理的频率,例如,低于例如红外信号的频率来处理非电离辐射。

射频电路的各种实施例可被设计成具有选择的尺寸和/或标称制造的尺寸以在各种频率下操作。可由一般的电磁原理中选择合适的尺寸,并且在此不对其进行详细描述。

本文描述的方法和装置可支持比常规工艺所能支持的更小的布置和尺寸。常规电路板的频率可被限制为低于约30ghz。本文描述的方法和装置可允许或适应较小尺寸的电磁电路的制造,其适合于旨在以更高的频率操作的射频电路,并且使用更安全且制造更简单,而且成本更低。

根据本文描述的电磁电路和制造方法包括用于生产电磁电路和部件的各种增材和减材制造技术,该电磁电路和部件与常规电路和方法相比能够以更小的侧面外形(profile)、更低的成本、更短的生产周期、和更小的设计风险来处理更高的频率。技术的示例包括从基板的表面机加工(例如,铣削)导电材料以形成传输线(例如,信号导线、带状线)或孔,其可以明显小于常规pcb工艺所允许的尺寸,机加工一个或多个基板以形成沟槽,使用三维打印技术将打印的导电性油墨沉积到沟槽中以形成连续的电势垒(例如法拉第壁)(例如,与其间具有最小间距的一系列接地通孔相反)、通过机加工穿过基板的一部分(例如铣削、钻孔或冲压)的孔而形成的“垂直发射”信号路径,并且其中放置导线(例如导线段)和/或打印导电油墨,以与设置在基板(或相反的基板)表面上的传输线电接触,以及使用3d打印技术来沉积所打印的电阻性油墨以形成电阻元件。

任何上述示例技术和/或其他示例技术(例如,焊接和/或焊料回流)可被组合以制成各种电磁部件和/或电路。本文针对射频传输线来描述和示出这样的技术的多个方面和示例,该射频传输线用于沿着电磁电路的层在一个维度上包含并传送电磁信号,并且可选地在另一个维度中垂直穿过到达该电路的其他层。本文描述的技术可被用于形成各种电磁部件、连接器、电路、组件和系统。

图1示出了可以是较大电磁电路的一部分的电磁电路结构100的示例。电路结构100包括结合(bond)在一起的一对介电基板110,并且在介电基板100之间包含有传输线120。传输线120是被配置为在电路内,例如,在电路结构100内传送电磁信号的电导体,并且可通过从任一基板110的表面机加工掉诸如电镀铜之类的包覆层而形成。由传输线120传送的信号可由电场和磁场参照另外的导体来定义。例如,传输线120被作为共面导体的基准导体126环绕,从而为由传输线120传送的信号提供次级或“返回路径”电导体。在一些示例中,术语“传输线”可以包括传输线120(第一导体)及其相关联的基准导体126(第二导体)的组合。在各种示例中,基准导体126可被耦接到基准地。传输线120对各种频率的信号表现出特征阻抗,并且该特征阻抗可取决于传输线120的尺寸(例如,高度和宽度)、传输线120与基准导体126之间的间隙的尺寸、以及基板110和间隙的材料特性。在各种实施例中,传输线120与基准导体126之间的间隙可填充有结合材料,例如,被用于将多个基板110结合在一起的粘合剂。

传输线120还可具有例如通过焊料到“垂直发射”导体130的电连接,该“垂直发射”导体130可被设置在基板110b中的机加工孔内。因此,导体130和传输线120可以形成电连续的信号传送,并且各自可传送和提供超出图1所示部分的范围的信号。在一些示例中,导体130可以是一段导线,例如铜线。在各种示例中,导体130可以是诸如如实心、空心、刚性、柔性、直形、线圈形、螺旋形等各种形式中的任何一种。在2018年5月24日提交的题为“增材制造技术微波垂直发射(additivemanufacturingtechnologymicrowaveverticallaunch)”的美国专利申请15/988,296中公开了垂直发射及其制造的至少一个示例的另外的细节,其基于所有目的通过引用合并于本文中。

在一些实施例中,可提供接地面140,并且接地平面140可由设置在基板110a的“底”表面上的导电性包覆层形成。可在基板110b的“顶”表面上提供附加的接地平面150。例如,接地平面150可由被设置在基板110b上的导电性包覆层形成。导电性包覆层的一部分可以通过机加工(例如,铣削)来移除,以提供具有例如适合于充当接地平面150的适当物理尺寸、形状或范围的接地平面。

常规的pcb制造技术可纳入接地平面作为用于信号迹线或带状线的基准导体,并且因此可要求多个接地平面之间的距离以及距它们之间的信号迹线的距离,以例如,为由信号迹线传送的信号建立特征阻抗。相比之下,传输线120设置有基准导体126,使得接地平面140、150对特征阻抗的影响很小或者没有影响,可以替代地用作与其他电路部件的隔离或者屏蔽,并且可以远远超出常规的要求。

因此,传输线120以及传输线120与基准导体126之间的间隙可以特别小,例如低至2密耳(0.002英寸)或更小,以容纳毫米波信号。因此,传输线120的阻抗可以较少受到接地平面140、150的存在的影响,这可以允许基于其它考虑(例如,强度、刚度等)来设计或选择基板110的厚度。

另外,由传输线120、基准导体126以及它们之间的间隙的组合来传送由传输线120传送的电磁信号,使得电流密度分布在导体(至少是传输线120和基准导体126)之间,从而导致电流密度低于使用pcb制造技术的常规传输线。因此,与常规的pcb传输线结构和制造技术相比,可减小单位传输距离的信号损耗。

电路结构100还包括法拉第壁160,该法拉第壁160是导体,该导体提供屏蔽或隔离作为“垂直”穿过基板110的电磁边界。法拉第壁160可通过以下方式形成:机加工穿过基板110向下到接地平面140的沟槽并采用导电材料填充该沟槽,所述导电材料例如是采用增材制造技术(例如,3d打印)施加的导电油墨。当导电油墨固化(set)时,其可形成基本上电连续的导体。如图所示,其中形成有法拉第壁160的沟槽不穿透或延伸穿过接地平面140。法拉第壁160因此可与接地平面140电接触。另外,法拉第壁160的“顶”可以与接地平面150电接触,其可通过例如稍微过度填充(over-filling)所机加工的沟槽以确保导电油墨和接地平面150之间的接触和/或通过施加焊料来实现。2018年5月18日提交的题为“增材制造技术(amt)射频电路中的法拉第边界(additivemanufacturingtechnology(amt)faradayboundariesinradiofrequencycircuits)”的美国临时专利申请no.62/673,491中公开了法拉第壁及其制造的至少一个示例的另外的细节,在此基于所有目的通过引用将其合并于本文中。

如图1所示,接地平面140、接地平面150、以及法拉第壁160一起形成基本上电连续的导体,该导体为由传输线120及其相关联的基准导体126传送的信号提供隔离边界。在一些实施例中,可选择接地平面140、150和法拉第壁160的尺寸布置来控制或限制由传输线120传送的信号的传播模式和/或为由传输线120传送的信号建立特征阻抗。在某些实施例中,接地平面140、150和法拉第壁160可被定位成使得仅横向电磁(tem)信号模式可沿着传输线120传播。在其他实施例中,法拉第壁160可被定位成将电路的一个部分与电路的另一部分隔离,而无需强加特定的传播模式和/或不对任何特定信号产生阻抗。

如上所述,结构100仅仅是其中可提供有电磁电路的结构的示例和一部分。所示的基板的进一步范围可容纳各种电路部件,并且在各个实施例中可提供具有附加层以容纳其他电路部件的其他基板。通常,电路的一部分可被设置在特定层上,并且可包括上方和/或下方的接地平面,并且整个电路(或系统)的其他部分可以存在于同一层的不同区域或在其他层上。

根据本文描述的系统和方法的各方面和实施例,图2示出在制造的一个阶段的电路结构100的部分结构100a。部分结构100a包括基板110a,基板110a可在各种表面上设置有导电(例如,铜)包覆层。在该示例中,基板110a在一个表面上具有导电包覆层112,该导电包覆层112用作形成传输线120和基准导体126的导电材料。同样,在该示例中,基板110a在相反的表面上具有导电包覆层,以用作接地平面140。可通过机加工掉包覆层112的至少一部分122来形成传输线120,从而留下一部分导电材料以用作传输线120,这与包覆层112的余留部分不同。

图3示出在另一制造阶段的电路结构100的另一部分结构100b。对于部分结构100b,基板110b被与基板110a对准,以结合在一起。在一些示例中,可以施加临时结合或固定(affixing),并且可以在稍后施加永久结合步骤,例如,可能需要加热或烘烤来固化或确保结合的持久性的结合。各种示例可在基板110b中具有孔,该孔被定位成与传输线120的一部分对准,例如,以容纳图1所示的导体130。在各种实施例中,基板110b的“顶”表面可以包括导电包覆层,如果需要,该导电包覆层可被用于提供接地平面。与包覆层112一样,基板110b上的任何包覆层的多个部分可以被机加工掉,以形成具有期望形状或范围的各种其他结构、部件或接地平面。

参考图2,形成(例如,通过机加工掉所述部分122)传输线120的导电性包覆层112可以等效地与基板110b相关联,而不是与基板110a相关联,例如,关于图3在“底”侧上。换句话说,提供传输线120的导电材料可以是与任一基板110相关的导电包覆层。此外,在各种实施例中,传输线120和/或基准导体126可以由不同的材料和/或通过其他手段来提供。

图4示出在另一制造阶段的电路结构100的另一部分结构100c。对于部分结构100c,沟槽162被铣削穿过基板110。在这个示例中,沟槽162被铣削穿过基板110和包覆层112的一部分,向下到形成接地平面140的导电包覆层。机加工掉材料以形成沟槽162并还可以形成基准导体126,例如,通过分离包覆层112的又一部分,留下与包覆层112的余留部分不同的导电材料的一部分作为基准导体126。在各种实施例中,沟槽162被铣削向下至接地平面140而不穿透接地平面140。在一些实施例中,完整的接地平面140可在沟槽为空时为结构100c的部分提供结构支撑。

图5示出在另一制造阶段的电路结构100的另一部分结构100d。在部分结构100d中,采用导电填充物164填充沟槽162以形成法拉第壁160。导电填充物164可造成与接地平面140电接触以形成基本上电连续的接地边界。如上关于图1所述,可包括另一个接地平面150,并且可通过物理接触和/或通过在沿着法拉第壁160在多个位置进一步施加焊料来将导电填充物164电连接到接地平面150,以与接地平面150电连接。在一些实施例中,完整的接地平面140和固化(例如,冷却、凝固)的导电填充物164可例如代替被机加工掉以形成沟槽162的材料来为结构100d提供结构支撑。

图6示出传输线120的一组尺寸以及将传输线120与基准导体126分隔的间隙的一个示例。在该示例中,机加工掉0.75密耳宽的包覆层部分以提供2.7密耳宽的传输线120。因此,基准导体126的边缘彼此相距4.2密耳,在传输线120和每个基准导体126之间留下0.75密耳的间隙(例如,包覆层的被机加工掉的部分的宽度)。

附图中所示的尺寸信息是用于说明的目的,并且表示某些尺寸可能是期望的或适合于某些应用,并且可表示通过本文所述的方法可实现的一些尺寸。在各种实施例中,尺寸可明显更小,或者可更大,这取决于生产中使用的减材和增材设备的能力并且取决于特定电路的设计和应用。

图7示出根据本文描述的各方面和示例制造毫米波传输线的方法700。方法700包括机加工掉导电性材料(例如,包覆层)(框710)以形成传输线,并且被机加工掉的区域形成间隙。通过机加工掉与传输线共面的其他导电材料(例如包覆层)(框720)来形成基准导体。机加工掉导电材料以形成共面基准导体(如在方框720中)可以是机加工沟槽穿过一个或多个基板,其同时机加工掉其中一个基板上的包覆层的步骤的一部分。可提供各种导电材料(框730)以形成可将传输线120和基准导体126与电路或系统的其他部分相隔离的一个或多个电势垒。例如,采用导电材料来填充沟槽可形成电边界,和/或包括一个或多个基板上的包覆层可形成例如作为接地平面的电边界。

可实现本文描述的系统和方法的其他优点。例如,常规的pcb制造可对诸如传输线的宽度之类的电路特征尺寸施加限制,从而可限制对常规制造的电磁电路来说可能适用的最高频率。此外,基板厚度影响与迹线宽度相关的(例如,由于到设置在相反表面上的接地平面的距离导致的)特征阻抗。因此,常规pcb工艺所需的更宽的迹线导致选择更厚的基板(以保持特定的特征阻抗),从而限制了电路能够制造得多薄。例如,常规pcb制造下的一般建议包括大约60密耳(0.060英寸)的总厚度。相比之下,根据所描述的各方面和实施例的电磁电路使用增材制造技术,可导致电路板具有低至约10密耳或更小的厚度的薄的外形(lowprofile),具有具备约4.4密耳或2.7密耳或更小的宽度的信号线迹线,并且互连几何形状基本上与板的表面对齐。

常规地,接地通孔提供(例如,在基板的相反表面上的)多个接地平面之间的电连接,并提供迹线上的信号与可能在附近的其他迹线的一些隔离。常规的接地通孔是直径约为8密耳或更大的钻孔,并且要求相距最小距离以保持板的结构完整性。因此,接地通孔是泄漏结构,尤其在较高频率下表现出电磁信号的损失。由于各种应用都需要支持更高频率的信号,因此接地通孔之间的最小间距就像是较大的开口,相对小的电磁能量波长可通过该开口逸出

相比之下,根据本文描述的方面和实施例的电磁电路和方法,其使用增材制造技术,允许电连续的法拉第边界,该法拉第边界可进一步电耦接至接地平面。因此,提供了一种电连续结构,并且该电连续结构被设置为垂直穿过一个或多个基板(例如,在基板的相反表面之间)设置,以形成限制电磁场的“法拉第壁”。在各个实施例中,这样的法拉第壁可电耦接两个或更多个接地平面。此外,在各种实施例中,这样的法拉第壁可约束和隔离来自相邻电路部件的电磁场。在一些实施例中,这样的法拉第壁可执行边界条件以将电磁信号限制为局部横向的电磁(tem)场,例如,将信号传播限制为tem模式。

在各种实施例中,可以以各种顺序执行各种减材(机加工、铣削、钻孔)、增材(打印、填充)和粘附(结合)步骤,根据需要进行焊接和回流操作,以形成具有一个或任意数量的基板层的电磁电路,其可以包括如本文所述的一个或多个法拉第边界。

用于制成各种电磁电路中任何一种的通用方法,包括铣削被设置在基板上的导电性材料以形成电路特征。所述方法例如可包括打印(或沉积,例如通过3d打印、增材制造技术)诸如由电阻性油墨形成的电阻器之类的其他电路特征。该方法可包括根据需要在任何特征上沉积焊料。所述方法还可包括铣削(或钻孔)穿过基板材料(和/或导电材料)以形成诸如空隙、或沟槽之类的开口;以及包括例如将导电材料(例如导电油墨或导线)沉积或打印(例如,通过3d打印、增材制造技术)到空隙、沟槽中,以形成法拉第壁或垂直信号发射件(例如,铜)。这些步骤中的任何一个步骤都可按给定电路设计所需的不同顺序执行、重复或省略。在一些实施例中,在电磁电路的制造中可涉及多个基板,并且该方法包括根据需要结合其他基板、其他铣削和填充操作,以及其他焊接和/或回流操作。

已经描述了至少一个实施例的几个方面以及一种用于制造电磁电路的方法,以上描述可以用于生产总厚度为10密耳(0.010英寸,254微米)或更小的总厚度的各种电磁电路,并且可以包括诸如窄至4.4密耳(111.8微米)、2.7密耳(68.6微米)或甚至窄至1.97密耳(50微米)的迹线之类的传输线,这取决于所使用的各种铣削和增材制造设备的公差和精度。因此,感觉本文描述的电磁电路可适用于微波和毫米波应用,其包括s波段、x波段、k波段和更高的频率,其中各种实施例能够适应超过28ghz和高达70ghz或更高的频率。一些实施例可适用于高至300ghz或更高的频率范围。

另外,根据本文描述的电磁电路可具有足够薄的外形(例如,10密耳或更小的厚度),并且具有相应的轻重量,以适合于包括当位于外太层空时通过展开而部署的折叠结构这样的外太空应用。

此外,根据本文描述的方法制造的电磁电路适应更便宜和更快速的原型制作,而不需要腐蚀性化学品、掩模、蚀刻、电镀等。具有被设置于一个或两个表面(侧面)上具有预镀导电材料的简单基板可形成芯起始材料,并且电磁电路的所有元件可以通过铣削(减材、钻孔)、填充(增材、导电性和/或电阻性油墨的打印)和结合一个或多个基板来形成。简单的焊料回流操作和简单导体(例如,铜线)的插入通过本文描述的方法和系统来适应。

此外,根据本文描述的方法制造的电磁电路可适应在非平面表面上的部署或需要非平面表面的设计。可使用如本文所述的铣削、填充和结合技术来制造诸如本文所述的薄的、薄外形(lowprofile)的电磁电路,以产生具有任何所需轮廓的电磁电路,例如,粘附至表面(例如,车辆)或支撑复杂的阵列结构。

已经如此描述了至少一个实施例的几个方面,应当理解,本领域技术人员将容易想到各种变更、修改和改进。这样的变更、修改和改进旨在成为本申请的一部分,并且旨在落入本公开的范围内。因此,前面的描述和附图仅作为示例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1