一种氮化物多结太阳能电池的制作方法

文档序号:21128749发布日期:2020-06-17 00:00阅读:362来源:国知局
一种氮化物多结太阳能电池的制作方法
本实用新型涉及太阳能电池
技术领域
,尤其是涉及一种氮化物多结太阳能电池。
背景技术
:氮化物半导体材料由于电子运动在很宽的范围内可调,因此能带宽度范围大、禁带宽度显著大于si等半导体材料,在晶体管、新型太阳能电池、半导体照明等诸多领域有着重要应用。在太阳能电池中,由于入射光子会依能量高低的顺序,先后被材料吸收。也就是短波长的光将会先被吸收,而长波长的光,由于光子穿透深度较深,因此最后才被吸收。一个光子的能量要大于材料的能隙eg(energygap),换句话说,就是射入材料的入射光波长要小于截止波长(cut-offwavelength),才会被材料吸收。因此,延伸太阳能电池的截止波长对于提高光转化率非常重要。技术实现要素:本实用新型所要解决的技术问题是提供一种氮化物多结太阳能电池,该氮化物多结太阳能电池的截止波长可以延伸至1771nm,进而促进吸收更长波长的光子,利于提高光转化率。本实用新型所采取的技术方案是:本实用新型提供一种氮化物多结太阳能电池,包括依次设置的inn底电池、aln成核层一、si子电池、aln成核层二、gan缓冲层、ingan顶电池、电流扩散层和设置在所述电流扩散层上的量子点材料层。量子点材料层的设置能够有效解决ingan顶电池表面的电流扩散层会大量吸收紫外光子的问题,能够有效提升紫外光波段的外部量子效率。优选地,所述ingan顶电池包括n型inxga1-xn层和p型inyga1-yn层,0.18≤x≤0.5,0.18≤y≤0.5。优选地,所述量子点材料层的材料为cds量子点、cdse量子点、cdse/zns量子点中的一种。优选地,所述gan缓冲层和所述ingan顶电池之间设置有bingan层,所述bingan层为b掺杂的ingan。采用bingan层可进一步改善传统gan缓冲层与ingan生长接口晶格常数不匹配而累积应力的状况,能够显著提高太阳能电池的光电转化效率。优选地,所述电流扩散层为ito层、azo、gzo、金属纳米线、纳米碳管、石墨烯、导电高分子中的任一种。电流扩散层能够加强正电极对载流子的收集。优选地,所述inn底电池包括n型inn层和p型inn层。优选地,所述si子电池包括n型si层和p型si层。优选地,所述inn底电池的底部设置有负电极,所述电流扩散层上设置有正电极。负电极同时也具有反射镜功能,可将光子再反射回中间电池再利用。本实用新型的有益效果是:对于材料氮化镓铟,光吸收截止波长为593nm,对于材料硅,光吸收截止波长为1127nm,因此硅能隙底电池的截止波长在1127nm,超过该波长以上范围不产生吸收与响应。本实用新型提供一种氮化物多结太阳能电池,包括ingan顶电池、si子电池和inn底电池,通过在si电池的底部增加设置inn电池,能够辅助中部的si电池对于在1127nm波段以上的不吸收光子延伸至1771nm被inn底电池吸收,进而促进吸收更长波长的光子,利于提高光转化率。附图说明图1为实施例1中的氮化物多结太阳能电池的结构示意图;图2为实施例2中的氮化物多结太阳能电池的结构示意图。具体实施方式以下将结合实施例对本实用新型的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本实用新型的目的、特征和效果。显然,所描述的实施例只是本实用新型的一部分实施例,而不是全部实施例,基于本实用新型的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本实用新型保护的范围。实施例1参见图1,本实施例提供一种氮化物多结太阳能电池,包括依次设置的inn底电池1、aln成核层一2、si子电池3、aln成核层二4、gan缓冲层5、ingan顶电池6、电流扩散层7和设置在所述电流扩散层上的量子点材料层8,所述inn底电池1包括n型inn层11和p型inn层12,所述si子电池3包括n型si层31和p型si层32,所述ingan顶电池6包括n型ingan层61和p型ingan层62,本实施中n型ingan层61为n型in0.33ga0.67n层,p型ingan层62为p型in0.33ga0.67n层,本实施例中电流扩散层7为ito层,量子点材料层8使用的材料为cds量子点,在所述inn底电池1的底部设置有负电极91,本实施例中负电极为厚度为20nm/20nm/500nm的ti/pd/ag负电极,在所述电流扩散层7的上部设置有正电极92,本实施例中正电极为厚度为50nm/50nm/2000nm的cr/pt/au正电极。本实施例还提供一种上述氮化物多结太阳能电池的制备方法,按照以下步骤制备:(1)制备si子电池:选用n型硅(111面)、电阻率介于0.5~5ω.cm作为衬底,衬底厚度减轻打薄以标准硅晶圆清洗程序去除金属杂质、有机物污染、微尘与自然氧化物并且降低表面粗糙度,然后对衬底进行清洗,分别使用丙酮、异丙醇、去离子水,采用超音波震荡机震洗各10分钟以清洗衬底表面脏污,采用氢氟酸溶液(水与氢氟酸比例=50:1),去除衬底表面的氧化物(二氧化硅)使得硅裸露于表层。采用硼硅酸盐(borosilicafilm,浓度5×1020cm-3)扩散源溶液,内含硼原子及具有挥发有机溶剂,使用旋涂机将其涂布于衬底表面,每分钟2500转,时间30秒,旋涂硼硅酸盐(borosilicafilm)之后,在250℃加热板上进行烘烤10分钟,烘烤之后即在衬底表面上留下一层二氧化硅的硼原子,衬底的硼原子扩散采用高温炉管进行,抽真空后通入高纯度氮气,一大气压开始升温并持温于1000℃,再降温回到常温下,衬底在高温扩散完成后依序浸入丙酮、异丙醇和去离子水,采用超音波震荡机震洗各10分钟,再采用氢氟酸溶液(水与氢氟酸比例=50:1)去除衬底残留表面的扩散物质,在最后的硅衬底形成pn结,与n-si(111)衬底形成结深100nm的p-si(111)层,进而形成si子电池。(2)采用原子层沉积技术在si子电池的双面生长aln成核层一和aln成核层二成为接口缓冲层,控制生长温度为250℃至350℃范围内,厚度范围控制为50nm至100nm。(3)再采用金属有机化学气相沉积技术在aln成核层二上生长gan缓冲层,控制生长温度为1000℃至1100℃范围内,厚度范围控制为500nm至1000nm内,本层可减少外延层的缺陷密度,提升晶体质量;生长ingan顶电池:继续在gan缓冲层上生长si源掺杂的n型in0.33ga0.67n层,生长温度为950℃,其中铟比例为0.33,镓比例为0.67,掺杂浓度5×1018cm-3,厚度200nm,继续在n型in0.33ga0.67n层上生长以mg源成为掺杂的p型in0.33ga0.67n层,生长温度为950℃,其中铟比例为0.33,镓比例为0.67,掺杂浓度5×1019cm-3,厚度范围为100nm至150nm,可提供足够的电子电荷,作为与顶部金属接触条件;(4)制备inn底电池:在与n-si(111)衬底相连的aln成核层一上生长inn材料形成底电池,先沉积p型inn再沉积n型inn,厚度均为10μm至50μm范围,控制生长温度为450℃至550℃范围内并在500℃的氮气n2环境下,退火20分钟。(5)在p型in0.33ga0.67n层上蒸镀半透明电流扩散层ito:将ito靶材料置于电子束蒸发设备中,其真空度状态下,同时通入流量为5sccm的氧气,温度为200℃,蒸镀2小时,以在p型in0.33ga0.67n层上形成150nm厚的ito膜;取出蒸镀后的衬底,再放入退火炉中,500℃的氮气n2环境下,退火10分钟,随设备冷却至常温状态下。(6)使用旋转涂布机将量子点材料cds铺设于p型in0.33ga0.67n层上面的ito表面;蒸镀正电极与负电极:蒸镀正型电极:cr、pt、au置于电子束蒸发设备内开始蒸镀,在半透明电流扩散层的正电极域蒸镀出一层厚度50nm的cr,在cr上蒸镀出一层厚度50nmpt,在pt上蒸镀出一层厚度2000nmpt,整个蒸镀过程中温度为150℃、蒸镀时间为2小时;在500℃的氮气n2环境下,再退火5分钟,制程温度自然冷却至常温后,即在半透明电流扩散层的正电极区域上蒸镀出自下至上成为一体、厚度为50nm/50nm/2000nm的cr/pt/au正电极;蒸镀负型电极:蒸镀正电极后将材料的inn底电池朝上,置于电子束蒸发设备中,并将ti、pd和ag靶材一同置于电子束蒸发设备中开始蒸镀,在底电池n型inn表面依次蒸镀出厚度20nm的ti、20nm的pd和500nm的ag,蒸镀过程中温度为150℃、蒸镀2小时;700℃的氮气n2环境下,退火5分钟,温度冷却至常温后,即在inn底电池的背面蒸镀出厚度为20nm/20nm/500nm的ti/pd/ag负电极,负电池也具有反射镜功能,可将光子反射再反射回中间电池再利用。实施例2参见图2,本实施例提供一种氮化物多结太阳能电池,包括依次设置的inn底电池1、aln成核层一2、si子电池3、aln成核层二4、gan缓冲层5、bingan层10、ingan顶电池6、电流扩散层7和设置在所述电流扩散层上的量子点材料层8,所述inn底电池1包括n型inn层11和p型inn层12,所述si子电池3包括n型si层31和p型si层32,所述ingan顶电池6包括n型ingan层61和p型ingan层62,本实施中n型ingan层61为n型in0.33ga0.67n层,p型ingan层62为p型in0.33ga0.67n层,本实施例中电流扩散层7为ito层,量子点材料层8使用的材料为cds量子点,在所述inn底电池1的底部设置有负电极9,本实施例中负电极为厚度为20nm/20nm/500nm的ti/pd/ag负电极,在所述电流扩散层7的上部设置有正电极10,本实施例中正电极为厚度为50nm/50nm/2000nm的cr/pt/au正电极,所述bingan层10为b掺杂的ingan。本实施例提供的氮化物多结太阳能电池(in0.33ga0.67n/si/inn)的三种pn结构材料的能隙值为2.09/1.1/0.7ev,光电转换效率高达47.83%。本实施例还提供一种上述氮化物多结太阳能电池的制备方法,与实施例1中的制备步骤相同,不同之处在于,步骤(3)中在生长ingan顶电池之前,在gan缓冲层上生长bingan层,具体过程为:在氮化镓缓冲层接续生长硼氮化铟镓层,金属有机物化学气相沉积mocvd系统添加三乙基硼烷triethylboron(teb)硼元素进行掺杂。利用硼元素进行掺杂形成bingan层可减少ingan与gan缓冲层的晶格常数不匹配以避免后续成长的in0.33ga0.67n层累积的应力而产生形变。实施例3本实施例提供一种氮化物多结太阳能电池in0.28ga0.72n/si/inn,制备步骤与实施例2相同,不同之处在于,步骤(3)中生长的ingan顶电池包括n型in0.28ga0.72n层和n型in0.28ga0.72n层。对比例:对比例提供一种三结太阳能电池gan/si/inn和gan/in0.33ga0.67n/inn,除各子电池与实施例2和3不同外,其余部分相同。对实施例2、3和对比例中的太阳能电池的最大转换效率进行分析,结果如表1所示。从表中可以看出,本实用新型提供的氮化物多结太阳能电池具有较高的光转化效率。表1实施例2、3和对比例中的太阳能电池的最大转换效率子电池1/子电池2/子电池3eg1/eg2/eg3(ev)η(%)in0.33ga0.67n/si/inn2.09/1.1/0.747.83in0.28ga0.72n/si/inn2.26/1.1/0.747.28gan/si/inn3.4/1.1/0.740.56gan/in0.33ga0.67n/inn3.4/2.09/0.742.07当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1