一种低功耗可调谐室温中红外光电探测器及制作方法

文档序号:29048111发布日期:2022-02-25 22:49阅读:187来源:国知局
一种低功耗可调谐室温中红外光电探测器及制作方法

1.本发明涉及红外光电探测器技术领域,尤其涉及一种低功耗可调谐室温中红外光电探测器及制作方法。


背景技术:

2.光电探测器,可将光信号转换为电信号,广泛应用于成像、通信、环境监测、材料鉴定、健康医疗、太空探索、国防安全等诸多领域。在紫外、可见光与近红外范围内,以gan、硅、ingaas探测器为为主的商业器件具有探测手段多、室温性能高、集成手段成熟、生产规模大等诸多优势;然而,在中红外波段,现有的商业化薄膜器件(如hgcdte、gasb/inas、insb、sias)表现出诸多弊端,主要包括薄膜生长与加工工艺复杂(外延生长难以兼容cmos工艺)、价格昂贵、操作条件苛刻(工作温度低至液氮甚至液氦以下)、响应范围窄(受制于能带)等,这些缺陷与瓶颈极大地限制了其进一步应用,难以满足现有信息技术和社会生活高速发展的需求。
3.近年来,随着石墨烯研究的不断深入,因其独特的电学、光学性质,同时还具有极好的cmos工艺兼容性,被认为是最具发展潜力的室温红外光电探测材料之一,且已有多个原型器件被证实,有望弥补传统薄膜光电探测材料的不足。然而,现有石墨烯中红外光电探测器的可调谐性能极大地依赖图形化石墨烯、复杂的金属电极阵列或外加电场来调控,这些器件制备工艺复杂、器件工作能耗高,极大地限制了其进一步应用。


技术实现要素:

4.本发明的目的是为了解决石墨烯中红外光电探测器的可调谐性能极大地依赖图形化石墨烯、复杂的金属电极阵列或外加电场来调控,这些器件制备工艺复杂、器件工作能耗高,极大地限制了其进一步应用的缺点,而提出的一种低功耗可调谐室温中红外光电探测器及制作方法。
5.为了实现上述目的,本发明采用了如下技术方案:
6.一种低功耗可调谐室温中红外光电探测器,包括源电极、漏电极、石墨烯、衬底、设于衬底上的底电极、设于底电极上的周期极化的铁电薄膜、导线;石墨烯与周期极化的铁电薄膜接触,源电极、漏电极与石墨烯接触,源电极、漏电极的顶部均设有接触电极。
7.所述石墨烯为单层石墨烯;中红外光源波长为3-25μm;源漏电极为金属电极,金属电极为金、钛或钯电极;铁电薄膜为高质量在衬底上外延生长的铁电薄膜及其异质结构;铁电薄膜为铁酸铋bfo、锆钛酸铅pzt、钛酸钡bto、铌酸锂lno、钽铌酸钾ktn、钛酸铅pto、或钽酸锶铋sbt;底电极为镧锶锰氧、钌酸锶bto或镍酸镧lno;衬底为钛酸锶sto或铝酸镧lao;周期极化的图案为周期条带状或周期圆形状;源漏电极用导线与商用电流计相连;导线为铝线。
8.本发明还提出了一种低功耗可调谐室温中红外光电探测器,包括以下步骤:
9.s1、将铁电薄膜进行周期极化翻转;
10.s2、转移石墨烯;
11.s3、沉积源/漏电极;
12.s4、焊接导线。
13.优选的,所述s1中,铁电薄膜小面积极化翻转可采用压电力显微镜的探针进行,大面积的铁电薄膜极化翻转采用水印法。
14.优选的,所述s2中,转移石墨烯的方法包括干法转移和湿法转移。
15.优选的,所述s3中,源/漏电极制作使用真空磁控溅射法。
16.优选的,所述s4中,导线焊接使用引线键合法。
17.与现有技术相比,本发明的优点在于:
18.本发明无需对石墨烯图形化,避免了图形化石墨烯加工过程中对材料的损伤及不光滑边缘的产生,无需复杂接触电极的制备,简化了器件的制造工艺,降低了大规模生产的成本,采用功函数有差异的金属电极作为源漏接触电极,无需外加偏压,器件即可工作,大大降低了功耗,可在室温工作。
附图说明
19.图1为本发明提出的一种低功耗可调谐室温中红外光电探测器的主视结构示意图;
20.图2为本发明提出的一种低功耗可调谐室温中红外光电探测器的俯视结构示意图;
21.图3为本发明提出的一种低功耗可调谐室温中红外光电探测器的周期极化的铁电薄膜俯视示意图。
22.图4为本发明提出的一种低功耗可调谐室温中红外光电探测器的均匀向下极化的铁电薄膜俯视示意图;
23.图5为本发明提出的一种低功耗可调谐室温中红外光电探测器的器件性能图。
24.图中:1、接触电极;2、源电极;3、漏电极;4、石墨烯;5、周期极化的铁电薄膜;6、底电极;7、衬底。
具体实施方式
25.下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实施例一部分实施例,而不是全部的实施例。
26.一种低功耗可调谐室温中红外光电探测器,包括以下步骤:
27.s1、选用铁电薄膜为铁酸铋bfo、底电极为镧锶锰氧lsmo、衬底为钛酸锶sto;
28.s2、bfo厚度为25nm;lsmo厚度为25nm,sto厚度为500μm;
29.s3、sto晶向为001;
30.s4、利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,极化方向为交替向上和向下极化,每根条带宽度为100nm,周期宽度为200nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
31.s5、湿法转移单层石墨烯;
32.s6、沉积钛/钯金属电极,钛电极的厚度为20nm,钯电极的厚度为20nm;
33.s7、在钛/钯分别沉积金接触电极,金电极的厚度为100nm;
34.s8、使用引线键合法将源漏电极用铝导线连接,铝导线的直径为1μm;
35.最终结果:器件在零偏压,室温下,入射光波长为7.2μm时获得最高响应度17.86ma/w。
36.图3中,条带宽度(d)为100nm,周期宽度(p)为200nm,图案阵列长度(l)为10μm,图案阵列宽度(w)为10μm;
37.图4中,图案阵列长度(l)为10μm,图案阵列宽度(w)为10μm。
38.图5中,周期为200nm至5μm以及均匀极化图案对应的器件响应度。
39.对比方案1
40.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为150nm,周期宽度为300nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
41.最终结果:器件在零偏压,室温下,入射光波长为7.55μm时获得最高响应度19.46ma/w。
42.对比方案2
43.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为250nm,周期宽度为500nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
44.最终结果:器件在零偏压,室温下,入射光波长为7.72μm时获得最高响应度21.01ma/w。
45.对比方案3
46.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为350nm,周期宽度为700nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
47.最终结果:器件在零偏压,室温下,入射光波长为8.11μm时获得最高响应度24.09ma/w。
48.对比方案4
49.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为400nm,周期宽度为800nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
50.最终结果:器件在零偏压,室温下,入射光波长为8.33μm时获得最高响应度26.68ma/w。
51.对比方案5
52.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为500nm,周期宽度为1000nm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
53.最终结果:器件在零偏压,室温下,入射光波长为8.45μm时获得最高响应度29.73ma/w。
54.对比方案6
55.利用原子力显微镜对铁电薄膜进行周期极化,图案为周期条带状,每根条带宽度为5μm,周期宽度为10μm,条带长度为10μm,图形阵列尺度为10μm
×
10μm;
56.最终结果:器件在零偏压,室温下,入射光波长为8.68-6.67μm时获得最高响应度0.85-1.74ma/w。
57.对比方案7
58.利用原子力显微镜对铁电薄膜进行周期极化,图案为正方形均匀向下极化,图形尺度为10μm
×
10μm;
59.最终结果:器件在零偏压,室温下,入射光波长为8.68-6.67μm时获得最高响应度0.91-1.48ma/w。
60.以上所述,仅为本实施例较佳的具体实施方式,但本实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实施例揭露的技术范围内,根据本实施例的技术方案及其发明构思加以等同替换或改变,都应涵盖在本实施例的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1