制造一种装置的方法

文档序号:6822772阅读:163来源:国知局
专利名称:制造一种装置的方法
技术领域
本发明涉及制造一种装置的方法。这种装置包含一个硬磁材料元件。该方法包括这样一个步骤,在这个步骤中借助一个或多个磁化线圈产生磁场结构使该元件被磁化。
包含一个产生磁场结构的硬磁材料元件的装置例子首先包括阴极射线管,例如在显示装置或示波器、电子显微镜以及NMR(核磁共振)装置中的阴极射线管。
从英国专利申请GB2000635A中了解到一个在公开段落中提到类型的方法。
在GB2000635中介绍了制造一种装置,在这种情况下制造一种用于显示装置的阴极射线管的方法。在该方法中,环状元件由包括若干安排在所说环状元件附近的线圈的线圈系统来磁化。阴极射线管包括用于产生三个电子束的电子枪,显示屏以及用于从显示屏这头到那头偏转电子束的偏转机构。由磁化元件产生的磁场结构影响从电子枪到显示屏路径上的电子束。借此,有关电子束在屏上的形状,位置或着陆角的误差能够被校正。这通过磁化与在图象显示上观察到的差错有关的元件来达到。元件的磁化是通过在将下降的交变电流加到线圈系统的那些线圈的同时将信号电流加到线圈系统的一个或多个线圈上来进行的。
然而,该已知的方法有若干缺点。用于磁化的线圈系统有比较高的能量消耗并占有大的空间。
已发现影响电子束的可能性实际上受到限制。误差的校正引进新的误差,新的误差比较小但很难甚至不可能校正。
本发明的一个目的是提供减少一个或多个所说缺点的一个方法。
为达此目的,根据本发明的方法的特征是在基本上恒定幅度的交变电流以及信号电流通过磁化线圈的同时磁化线圈和元件在元件磁化时彼此相对运动。
根据本发明的方法一般说需要较小的能量并更准确,即由元件产生的磁场能够达到的准确度对预定的场产生的对应的准确度而言更高。
根据技术状况磁化的元件产生的磁场呈现不希望有的高次分量。这些高次分量在磁化时围绕磁化线圈的线圈边缘位置产生,和/或围绕分离磁元件的边缘产生,和/或由元件中的非均匀性产生。这些高次分量在已知的方法中通过增加磁化线圈和元件间的距离能够被减小,然而这增加能量消耗。
在根据本发明的方法中磁化线圈和元件的相对运动以及其中元件被磁化的方式使得在磁场结构中呈现上述的不希望有的高次分量的减少。这就导致了磁场结构有较高准确度。相对运动和加上交变电流(借此产生比较快变化磁偏置场)以及一个或多个信号电流加到磁化线圈使得边缘效应减小。所说的边缘效应(在以前的技术中出现,例如围绕磁化线圈或围绕分离元件的边缘出现)是元件附近磁场结构中不希望有的高次分量产生的部分原因。
因为磁化线圈的容积一般说比较小,所以磁化过程需要较少的能量。不是象以前技术那样使用例如八个磁化线圈而是用较少的,如一、二个的线圈就足够。最好只用一个磁化线圈。
本发明很适用于阴极射线管其包含产生电子束的装置(例如电子枪),所说的电子束在工作时通过元件的磁场结构运动。
磁场结构的不准确性对电子束的形状和位置产生有害的影响。
关于阴极射线管,消除或减少磁场结构中的不准确性是特别重要的。阴极射线管包含用于偏转电子束的装置,在其中工作时电子束在磁场结构中的位置由电子束的偏转来控制。
如果一个电子束(或者一些电子束,如果已产生多于一个的电子束)在磁场结构中的位置依赖于电子束的偏转,则由在磁场结构中的不准确性引起的误差依赖于偏转(即位置相关的)。这些动态误差的校正比恒定的亦即静态的误差的校正困难。
最好是元件和磁化线圈以这样方式互相相对运动,即至少元件的一部分在一次运动中被磁化二次。
结果至少元件的一部分被“重写”,亦即被磁化二次。在磁场结构中的陡然过渡因而被避免或减少。
在这些实施例中,当线圈和元件相对运动继续时最好出现交变电流和信号电流的幅度减小的结果。
当线圈和元件相对运动继续时,通过减少所说电流的幅度,消除元件磁化呈现陡然过渡。这些过渡引起磁场结构中特别高次分量中的不准确性。
本发明的种种方面据下面参照在此所描述的实施例的说明将显示易见。
在附图中

图1表示一个显示装置。
图2是一个用环状磁化元件提供的偏转机构的正视图。
图3说明已知方法。
图4和图5说明在按照已知方法制造的装置中的磁元件的磁场结构。
图6说明根据本发明的方法的一个实施例。
图7A到7F说明经过线圈的信号电流和该例中的环状元件的磁化及围绕它的磁场之间的关系。
图8说明棒状元件的磁化。
图9表示围绕棒状元件的磁场。
图10说明一个根据本发明的方法的实施例。
图没划标度。在这些图中,同样的标号一般系指同样的元件。
彩色显示装置1(图1)装有一个包含显示窗3的真空外壳2,锥形部分4和颈5。所说的颈5容纳一个用于产生3个电子束7、8和9的电子枪6。显示屏10在显示窗的内侧上被提供。所说的显示屏10包含了发红、绿和蓝光的荧光元件的荧光图形。在它们到显示屏的路径上,电子束7、8和9借助偏转机构11从显示屏10这头到那头偏转并穿过了安排在显示窗3前面的障板12,障板12包含一个有小孔13的薄板。障板用悬挂装置14悬挂在显示窗中。3个电子束以一个很小的互相相对角度会聚并通过障板的小孔,因此每个电子束只射落到一个颜色的荧光元件上。
图2是一个从荧光屏看偏转机构11的正视图。偏转机构11里面有2个偏转线圈26和27以及环状可磁化元件25。在根据技术水平的方法中,元件25被装有若干磁化线圈32的磁化线圈系统31磁化,如图3中所示。
线圈产生一个磁场,由此元件25被磁化。元件25产生一个磁场,由此电子束的形状和路径在工作期间受到影响。
图4和5说明环状元件25的磁场结构。环状元件25被按十字形式排列的4个线圈32磁化。元件25有2个北极(N)和2个南极(S)(图4)。磁场H(其在离元件25内侧41的短距离上的强度用在图5中按线51计算的角度φ的函数来表示)呈现2个有大致对应于线圈32尺寸的宽度D的最大和最小值。在最大和最小值之间的场强近似为零。于是,磁场H有4极分量。然而,除了4极分量磁场还包括高次分量,亦即12极、20极和28极分量。虚线52示意地表示一个4极场。线51和52之间的差形成一个包括12极分量和所说的高次分量的场。换言之,除了4极分量,场结构51还包含12极分量和高次分量。高次分量的强度和尺寸不能按意志选择,但由所应用的方法决定。通过加大线圈32或在离元件25的较大距离上安排所说的线圈,12极分量的强度能够被减小。然而,这占据空间并涉及能量消耗。高次多极的强度一般地比低次多极的强度按到元件25的距离的函数呈现强的衰减。消除不希望有的高次多极更重要,因为靠近元件的场结构的准确度成为更重要。如果电子束被偏转并因而束和元件间的距离由所说的偏转来控制,这点特别重要。
图6说明根据本发明的方法的2个实施例。
在第一个实施例中,带有磁芯61的线圈60被具有恒定幅度A的交变电流64(偏置电流)和信号电流65激励。在同时,如在图中用箭头66所示,环状元件25被旋转。该线圈产生了主要与环成直角延伸的磁场H1。磁场H1使得环状元件25被磁化。元件25的磁化和由此而引起的靠近元件的场结构由信号电流65和运动66决定。磁化线圈系统占据比已知的磁化线圈系统小的空间。借助于线圈的相对运动和所说的线圈被磁化的方式,元件25的磁化能够被准确地确定。本发明的另一优点在于元件材料中不均匀性(例如厚度和/或元件的成分、擦痕和/裂缝的变化),这也可导致由元件产生的磁场中的有不希望有的分量仍能够被满意地补偿。不均匀性能够或者用单独的测量或者在线圈61被使用时的测量进行测量。当系统通过使用偏置信号64被线性化时,亦即元件的磁化强度近似线性地被信号电流65强度控制时,不均匀性能够在信号电流65中用一个简单的方法被补偿。因此,不均匀性的干扰作用能够被容易地补偿。甚至元件中25%或更多的厚度差也能通过信号电流的适当减少或增加被补偿,因此所说的厚度差不能或很难导致在产生的磁场中的偏差(相对于所预计的磁场)。在已知的静态安排中,不均匀性能够被补偿的程度是非常小的(仅仅当不均匀性在线圈附近出现时)。
元件25也可被具有空气隙67的电磁铁62磁化。这样的一个实施例在图6的右手侧被描写。这样的线圈产生了主要沿元件指向的磁场H2。
最好是当线圈和元件互相相对运动继续时交变电流64和信号电流65的幅度在磁化工作的最后部分时减小。借此在线圈系统的末端附近的边缘效应被消除(亦即线圈系统的线圈在磁化工作终止时所处在的位置)。
较可取的是元件旋转360°以上。结果至少元件25的一部分被磁化了2次。这样的优点是,即在磁化工作开始时出现的边缘效应(例如在磁心61的边缘附近)被重写。
图6表示根据本发明的方法的实施例,其中线圈系统由一个线圈组成。该线圈系统可以由若干线圈组成。例如2个完全相反的线圈,它们最好各旋转稍大于180°。加到线圈上的信号对应于所要求的元件25的左半部或右半部的磁化。
最好,信号电流包含对应于予计磁场结构中的分量的分量,信号电流分量对于适用于予计目的磁场结构的相应分量呈现相位差。这种情况将在图7A到7F中说明。
由通过线圈(60或62)的电流I(见图7A)产生的元件25中的磁化强度M包括与元件25成直角延伸的分量(M‖(I))(见图7B)和沿元件25延伸的分量(M(I))(见图7C)。分量M和M‖的例由磁场强度(H1、H2)控制,但对于大范围的多极来说基本上是固定的。
图7A表示通过线圈61的信号电流65的强度I(y值)是线圈61,相对于环状元件25的位置(X值)的函数(y值)。该相对位置用相对起始位置(0弧度)的弧度来表示,在终点(4π)处与起始点相一致。该信号电流强度I按正弦变化并呈现两个最大值和最小值,亦即两个周期。这样的电流变化能产生4极场;在要相重合的起点和终点之间呈现三个周期的电流就能产生6极场;通过呈现4个周期的电流能产生8极场等等。目的是用该信号电流I产生4极磁场,这个磁场呈现均匀趋势,亦即初始强度等于零并且场呈现2个最大值和2个最小值。
电流31引起元件25的磁化,所以磁场分量M(I)和磁场分量M‖(I)都在环状元件中产生。图7B表示M‖(I)的强度,而图7C表示M(I)的强度。元件25的2个磁化分量都在元件25的最邻近处引起有纵向分量H‖的磁场。图7D表示由磁化强度M‖(I)产生的磁场H‖(=H‖(M‖(I)),而图7E表示由磁化强度M(I)引起的磁场M(=H‖(M(I))。总纵向磁场分量H‖等于在图7D和7E中表示的2个磁场之和,亦即H‖(I)=H‖(M‖(I))+H‖(M(I))图7F表示电流I和由电流I产生的场H‖(I)。图7F示出在电流I和场H‖(I)之间有相位差。场磁H‖(I)的峰、谷以及零交叉点相对于电流I的峰、谷以及零交叉点移动约0.4弧度(对应于约22°)。假设予计的场对电流是同步的,即予计的场H‖(I)的值在起点等于零,明显的是磁场H‖(I)不对应于予计的场,因为H‖(I)的初始值不等于零。如果考虑到围绕环的磁场,则发现极(最大值和最小值)相对于予计场极旋转。本发明人已认识到这个效果,在一个最佳的实施例中电流和予计磁场间有相位差。在该例中,产生一个相当简单的磁场,它只含有4极分量。在这样的一个简单场的情况下,类似于由电流和予计场间的相位差得到的效果能通过在磁化后旋转环来达到(在该例中,环必须旋过约11°的角度)。在更一般的意义上,该效果通过位移或运动元件来达到。如果予计场包含若干分量(例如4极和12极分量)上述效果不可能达到,因为对于不同的分量必要的元件移动是不同的。对于6极、8极、10极等分量,相移(术语“相移”在这里是相对于信号按正弦变化定义的)近似相等。由于这个原因,在磁化元件25上信号电流包含对应的磁场结构中的分量(2极、4极、6极、8极等)的分量,信号电流分量相对于予计磁场结构的相应分量呈现相位差。该相位差由磁化强度M和M‖之间的比来控制。
图8示意地表示一个细长元件81,一个线圈82沿该元件运动以磁化该元件。图9示意地表示靠近元件81的侧面83处的予计磁场结构91。该予计磁场能够用富利叶分析分解成2极分量(在元件81任何一侧上的磁极)加4极分量、加6极分量等。在该例中,6极分量将比较强。在元件81中的磁化将既包含与平面83成直角延伸的分量(M)也包含沿该平面延伸的分量(M‖)。
信号电流分量和磁场结构中的相应分量间的相位差使得磁场结构产生的准确被改进。
提高准确度的另一解决办法被示意地表示在图10上。在该图中,磁化线圈系统包括2个磁铁101和102。使得元件运动的气隙在所说的2个磁铁之间,所说的气隙在图中用箭头表示。如果线圈101和102在I1=-I2的情况下分别被电流I1和I2激励,在元件25中产生磁化强度M‖。在这种情况下M分量是可忽略的。此外,信号电流分量和予计场分量间的相位差基本上是不必要的。如果线圈101和102在I1=I2的情况下分别被电流I1和I2激励,则在元件25中产生磁化强度M,如图10中所示。在这种情况下,M‖分量是可忽略的。于是,为达到一个高的准确度,在信号电流分量和予计场分量之间的90°一对一相位差是足够的。
明显的是,在本发明的范围内对本专业的技术人员来说许多变更都是可能的。例如,在图中一个用于彩色显示装置的阴极射线管被示出。然而,本发明也能适用于示波器,单色显示装置、行波管、电子显微镜等,甚至适用于NMR装置。
总之,在本发明中磁化设备的元件以致产生一个围绕所说元件的磁场结构。
为达到这一点,利用磁化线圈和元件以及磁化线圈互相相对运动来完成,所说的磁化线圈载有基本上恒定幅度的交变电流以及信号电流。
较可取的是,一个或多个信号电流分量和相应的予计磁场结构的分量之间有一相位差,亦即信号电流分量稍超前或滞后相应的予计磁场结构的分量。
权利要求
1.一种制造包含硬磁材料元件的装置的方法,该方法包括用一个或多个磁化线圈磁化元件产生磁场结构这一步骤,其特征在于基本上恒定幅度的交变电流和信号电流通过磁化线圈的同时,磁化线圈和元件在元件磁化时彼此相对运动。
2.如权利要求1中所述的方法,其特征在于装置是一个阴极射线管,其包含用于产生电子束的装置,所说的电子束在工作时经过磁场结构作运动。
3.如权利要求2中所述的方法,其特征在于阴极射线管包含用于偏转电子束的装置,并且在工作时电子束在磁场结构中的位置由电子束的偏转控制。
4.如权利要求1或2中所述的方法,其特征在于当线圈系统和元件彼此相对运动继续的同时,在磁化工作的最后部分交变电流的幅度减小。
5.如权利要求1中所述的方法,其特征在于进行相对运动使得至少元件的一部分在一次运动中被磁化二次。
6.如权利要求1中所述的方法,其特征在于信号电流包含相位于予计磁场结构中的分量的分量,信号电流的分量相对于予计磁场结构的相应分量的呈现相位差。
7.如权利要求1中所述的方法,其特征在于磁化线圈系统包括2个磁铁,使得元件运动的气隙位于所说的2个磁铁之间。
全文摘要
设备的元件如此被磁化以致产生围绕元件的磁场结构。为达到这一点,利用磁化线圈并使元件和磁化线圈互相相对运动,磁化线圈载有基本上恒定幅度的交变电流,以及信号电流。最好,在信号电流和予计磁场结构之间有相位差。
文档编号H01F13/00GK1236478SQ98801106
公开日1999年11月24日 申请日期1998年6月11日 优先权日1997年8月4日
发明者J·M·瑞格罗克, M·L·A·弗林藤, A·A·维尔胡斯特, C·M·斯密特 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1