Emc滤波器的制作方法

文档序号:7312197阅读:585来源:国知局
专利名称:Emc滤波器的制作方法
技术领域
本专利申请涉及用于从电气(electrical)或电子(electronic)电路或线过滤掉 不需要的噪音分量的电气滤波器,并且尤其但不是排他性地涉及,用于在主频率处的主线 或配电线的电磁兼容滤波器。
背景技术
当前在电气和电子行业,电磁兼容性(EMC)是越来越关键的因素。存在大量电气 电路和设备,其易于生成不需要的电气噪音、或者易于遭受到其它电路或设备生成的噪音。一般通过在噪音生成装置或在噪音敏感装置的主供应线上插入低通LC滤波器来 处理所传导的噪音和干扰。这种滤波器将不需要的频率分量衰减到无害的水平。可以采用 许多滤波器拓扑,包括典型的“L”、“T”以及“Pi”滤波器拓扑。欧洲专利申请EP1069673给出了包括无源元件的三相噪音抑制滤波器的例子。已经在许多应用中证明无源EMC滤波器有效。然而,这个技术的缺点是为了达到 所需要的衰减水平,为这个应用必需高位值的电容器和电感。所产生的滤波器的大小和成 本主要由这些大部件来确定,尤其在需要高度衰减共模噪音时。此外,泄漏电流直接与滤波 器电容器的电容成正比。也已知在噪音抑制滤波器中采用有源元件,例如如在欧洲专利申请EP0995266 中。有源元件的使用允许使用较小的的电感和电容器,从而提供了更紧凑的滤波器。但是, 现有的惯用的有源滤波器具有可靠性比它们的传统无源相当物差的信誉,并且存在它们可 能由于过电压或超温度击穿而失败,或者显示出不稳定及振荡的忧虑。电源线EMC滤波器 在大多数情况中包括接地电容器(capacitor to earth),所谓的Y电容,与适当的电感,以 便实现共模衰减。其不可避免的不需要的后果是电流通过Y电容器流到地_所谓的漏地电 流(ELC)。在以单线的示意图形式示出了已知EMC滤波器的例子的图1中,通过标号30指 示Y电容,36是相应的电感,而35是漏地电流的路径。通常,Y电容器的电容以及它两端的 电压上升的越大,ELC越强。在高电平时,这个ELC被认为危及到人员安全。除了危及到人员,过大的ELC可能 干扰电气系统的可靠运行。尤其包括残余电流检测(Residual Current Detection, RCD) 的装置将由于RCD器件的跳闸而被中断。因此,在设计EMC滤波器的时候,将漏地电流最小 化被认为是良好的设计。对具有星形接地(star grounded)供应的电源系统(即,欧洲的TN系统)而言,接 地泄漏可能是个问题,尽管由于在正常情况下系统被围绕地电势平衡,ELC通常是适度的。 然而,高ELC值可能在高功率滤波器内或者需要强共模衰减的地方出现。相似的问题存在,由于IT电源系统,如被应用于,尤其,在船和工厂。这里主电源 通过高阻抗仅被对地松参考(looselyreferenced)。这样做使得在一个相位对地短路的情 况下,装置将相对安全地继续运行。然而,在这个短路模式中,电源系统是有效地“被角接地 (corner-earthed) ”并且图2的星点90将看到快速的瞬变电压。如果使用了大的电容器,
3那么高ELC将存在,其可能超过Y电容器的功率极限并且导致灾难性的故障,其可能进而迫 使停电。这个故障链可能危及IT电源系统的可靠性。所以,存在对具有低ELC的噪音抑制滤波器的增长的需求。传统地为了限制ELC, 这样的滤波器已经被构造,在接地路径具有减小的电容。但是为了维持适当的衰减,滤波器 电感必需相应地被增加以补偿所减小的电容,其可能使滤波器更大并且更贵。然而,即使增 大电感值也不是完善的解决方案,并且具有小Y电容的滤波器对EMC噪音减低来说效率常 常比具有较高Y电容的滤波器低。另外,这增大的电感可能导致增加的功率损耗,温度升高 以及端到端的电压降,所有不利的情况。

发明内容
所以存在对结合了在所有频率处的高衰减、低ELC、以及紧凑大小的EMC抑制滤波 器的需求。另外地,存在对能被容易地适用到不同应用、并且在正常和故障情况中都安全的 EMC滤波器的需求。根据本发明,可以借助于所附的权利要求书中的主题来达成这些目标。


借助于通过示例方式所给出并通过图所示意的实施例的描述,将更好地理解本发 明,其中图1是单线的示意图。它以简化的示意的方式显示出已知类型的EMC滤波器和泄 漏电流的路径。图2以简化的示意的方式显示出已知类型的三相EMC滤波器和泄漏电流的路径。图3以方块示意的方式示意了根据本发明的一个方面的有源EMC滤波器。图4更具体地示意了根据本发明的一个方面的EMC滤波器的例子。图5和图6示意性地示出了根据本发明的可能的滤波器组件。图7和图8示意性地示出了根据本发明的两个二阶滤波器。
具体实施例方式EMC滤波器中的接地泄漏的问题和原因被示意在图1中。电源线11,其可以是单 或多相,借助于滤波器20被连接到器件15,以便抑制可能的由器件15所生成并且沿线11 所传输的干扰。在这个简单的实现中,滤波器包括被连接在相导体和接地导体之间的串联 的电感36和“Y”电容器30。跨“Y”电容器30两端看过去的任何电势将非常有助于漏地电 流35。但是在三相电源线的情况中,相同的情形被表示在图2中。在这个情况,已知滤 波器使用与相导体700交叉连接的一排“X”电容器331,其有助于降低差分模式噪音。另 一方面,共模噪音被连接在星点90和地之间的电容器330抑制。如在所示出的被角接地 (corner-grounded)的例子中,如果相位电势相对于地电势不平衡,“Y”电容器330显示出 大的电势并且让相当大的漏地电流35流动。图3是用于AC电源线的低通EMI抑制滤波器的简化方块图。它包括两个电感 401和402,分别到线侧和负载侧,被到地的中心分流路径所分开,因此形成“T”滤波器。根据未呈现出来的变化,滤波器具有“L”方案,只包括一个或者在线侧、或者在负载侧的感 应器。为了分流到地的RF噪音电流,抽头单元405提供到电源电缆的电连接(galvanic connection)。本发明包括用于实现该电连接的不同的器件。然而,优选地,这通过绝缘位移 连接器(IDC)来获得。IDC技术节省了生产时间并且避免了切断和接合高电流相导体700。 它不需要另外的绝缘,如果相导体被暴露将需要绝缘,并且它提供对电源电缆的机械支持, 其在高功率应用中可能非常大。典型地,X电容器网络410由3个以星形连接的电容器构建。这在三相电源系统 的重要情况中是需要的,但例如在单相低电压系统中可以被省略。高值的泄露电阻(bleed resistor)(此图未示出,但图4中可见)通常与每一个电容器并行连接。X电容器提供对 称的模式的衰减;对于非对称RF噪音它们还提供在每一个相位和电容器星点90之间的低 阻抗。电平鉴别器块430监测相对于地电势的星点电压。当星点电压超过设定电平时, 鉴别器430传送禁止信号给开关器件420。可选地,电平鉴别器430可以包括某一信号积 分(未示出),以在快速瞬变情况下抑制禁止信号。可以相对于正常运行情况期间所期望 的瞬变设置积分时间常数。可选地,可以让鉴别器430的输出在滤波器单元的外部可用,以 用信号通知故障的出现。然后滤波器可以包括电气错误输出、或者光学错误输出(即,故障 LED)。开关单元420被插入在星点90和放大器块460之间。优选地,开关单元是基于 固态继电器器件(SSR),但是也可以包括机电式继电器、或者任何适当的开关器件。开关单 元420的目的是在线绝缘故障、或者过度不平衡、或者任何导致在星点90的电压升高到正 常值以上的情况下,将电容器星点90与地隔离开。开关单元还接受来自辅助电源供应单元 450的控制。禁止还导致开关单元在通过星点90相对于地的电势的升高所检测到的线故障的 情况下打开。开关单元420提供额外的安全度并且确保ELC在所有情况中都保持在安全限 以内,并且确保滤波器是容错的(fault-tolerant)。例如,在IT系统中一个相位的绝缘故 障的情况下,滤波器将有效地将自己切断,并且该系统能够继续运行但具有较高的噪音水 平,直到故障被修复。辅助电源供应450是小的隔离电源(isolated power source)。它可以被远程放 置并且在滤波器的外部,或者集成到它内。它应当由贯穿(rim through)滤波器的相同电 源线供电并且,典型地,它将被放置在滤波器负载侧。系统的电源需求直接正比于供应单元 的输出电压;因此选择适度的电压电平有附带的优点。典型地,48V DC和10W连续输出功 率是充足的。在接通处,没有来自电源供应单元450的电压,并且继电器在它的正常的打开 位置。这避免了通过放大器块460到地的涌入电流(inrush current)。放大器块460接收它的来自电源供应单元450的供应,并且包括被布置按照由滤 波器470所提供电压输AVi的函数形式而减弱(sink)电流Itl的受控源465。优选地,如 它在图中被示出的,受控源近似于受控电流源,但这不是本发明的必要或限定特征。滤波器 470是被调整(dimension)为拒绝、或至少衰减电源频率,以及让无线电频率传送到放大器 460的高通滤波器。滤波器角频率被设置在,例如,150kHz。放大器460被布置,例如,为与电压输入Vi成比例地减弱电流在这种清况下,传递函数
G(f)=I0(f)/V1(f)具有逆阻抗(inverse impdance)的量纲(dimension),并且放大器460被称为跨 导放大器(transconductance amplifier)。然而,注意这不是必要特征,并且本发明的滤波 器可以根据环境被修改为使用电流控制的电流源、或者任何其它适当的受控电流源。同样 根据情况,输入Vi可以是差分或者单端的。可以理解到,电流Itl具有降低星节点90处电压的效果,其依次通过感测导线415 和高通滤波器470降低放大器460的驱动。滤波器具有倾向于稳定输入电势的负反馈,在 这个情况下,星点90在恒定值的电势,至少在噪音频率波段。这样星点90处在RF频率的 阻抗非常低并且实现了有效的噪音分流。重要地,输入Vi被通过感测导线415直接地测量, 其未承载显著的电流并且,所以,引入了可以忽略的电压误差。通过放大器460中的正向增 益(forward gain)来补偿在开关单元420和连接电缆中的任何电压降。本发明的滤波器 可以忍受开关420的“导通”状态中的残余阻抗,并且不被开关420的“导通”状态中的残 余阻抗(residual impedance)、以及电缆417的长度所影响。放大器的正向增益还补偿地 电容器330两端的电压降。放大器单元460包括高压额定(rated)的电容器330,例如额定X2的电容器,以确 保在任何情况下的对地绝缘,例如在高电势或涌流(surge)测试期间。也在在鉴别器430和 滤波器470中,在合适的地方,提供等同的绝缘,但是相应的电容器未被画出,以避免图杂 乱。注意到电容器330的值必须以来自电源供应450的的供应电压的函数进行选择是重要 的,较小的电容器需要较大的摆幅(swing)以便让希望的电流通过。由于电容器330的相 对小的值以及由于通过高通滤波器470的电源频率的强烈衰减,本发明的滤波器中的ELC 比相似性能的常规滤波器中的明显地小。图4示意了根据本发明的另一实施例的低通EMI噪音抑制滤波器的另一例子。在 本申请的这个图和其它图中的相同标号指示相同的或等同的特征。本发明的这个实施例是“T”型滤波器,包括两个对称的扼流圈,线侧上的线扼流圈 401以及负载侧上的负载扼流圈402,由到地的中心分流路径所分开,该中心分流路径优选 地通过绝缘位移连接器(IDC)405来获得。线和负载扼流圈401、402在线内施加纵向不对称的阻抗。典型地,将使用高磁导 率的磁核材料。优选地,非常少的旋转(turn)将被应用到该核。典型地,电源电缆只穿过 核一次。因此扼流圈像串在电源电缆上的珠子(bead)。所以这些扼流圈易于生产,尤其对 高电流应用而言。它们成本低,紧缩,具有低温度上升,低功耗以及到负载电压降的低压线 (lower line)。另外,电源电缆可以保持绝缘所以扼流圈内的滞缓和间隙距离(craping and clearance distances)不是问题。因为扼流圈小,不需要树脂(灌注混合物)来固定 扼流圈,这进一步降低了成本和重量。没有树脂,滤波器可能更容易被回收,其已经变成了 环境问题。然而,在不脱离本发明范围的情况下,扼流圈401、402可以被不同种类的电感元 件替代,例如绕线感应器(woundinductor)。电平鉴别器430由通过两个背靠背的齐纳二极管431实现,并且通过额定HV电阻 432适当地对地绝缘。它直接驱动开关单元420中的固态继电器的输入,其被光绝缘。部件421是瞬变电压抑制器件,例如MOV压敏电阻、TranZorb (成世(Vishay)的商标)、或者 用于限制固态继电器两端的电压降的任何其它适当的部件,例如在涌流测试期间。为了同 样的目的,相似的器件469被用在放大器单元460中。这个实现中的高通滤波器470是具有差分输出461的两级桥型滤波器。这具有 降低可能导致谐振的过度相位偏移的好处。然而,其它实现也是可能的并且被包括在本发 明的范围内。高通滤波器470被以地电势作为参考并且它被借助于高压额定电容器472、 462、和463与附近的级隔开。注意到本发明的滤波器中高压和涌流绝缘完全依赖无源 (passive)绝缘方式是重要的。本发明的滤波器具有对从地的电源导体700的绝对绝缘 (positive insulation),其不能被有源部件的失灵所危及。图5和图6示意了滤波器和IDC连接器的组件。IDC电缆夹405包括两个被紧固 在电源电缆700上的半部405a和405b。上部的夹子405b承载了三个绝缘位移器件406,例 如针或刀片,以便刺入电源电缆绝缘层并且提供与三个电源相位中的每一个的电连接。另 外,电缆夹405优选地被固定到滤波器的罩400并且对在高电流应用中可以非常大的电源 电缆提供机械支持。这节省了生产时间因为不需要为了进行电连接而从电缆移去绝缘层或 者切开并且重新结合电缆。它还避免了曝露裸铜从而避免了另外的绝缘需求。根据本发明 的未示意的变化,滤波器可以包括用于电源相位中每一个的单独的夹子。电缆夹405优选 地用作对噪音滤波器剩余部件的支持,例如在装配PCB的模块800上,如它在图5上所显示 的。根据本发明的另外一个方面,有源模块800可以被根据需要与最少数量的外部部 件合并,以构成EMC滤波器。这样,本发明的EMF滤波器可以被常规地集成在主机装备内。 优选地,模块800包括开关单元420、跨导放大器460、高通滤波器470以及鉴别器430 ;根 据需要辅助电源供应450和X网络410可以被包括在模块800中,或者分别提供。这样本 发明的EMF滤波器可以被常规地集成在各种主机器件中。回到图3,典型地,X电容器网络410构造自三个适当绝缘类(insulation class) 的电容器,例如根据EN 132400的额定X1、X2、Y1、或Y2的电容器。高值的泄漏电阻(bleed resistor)与每一个电容器并行连接。这些电容器提供对称的模式的衰减。它们还提供每 一个相与电容器星点90之间的低阻抗路径用于不对称无线电频率噪音。在接通以及在故障的情况下,固态继电器420将电容器星点与地隔离。给固态继 电器420提供两个控制输入,一个来自辅助电源供应450而禁止信号来自电平鉴别器430。 在接通时,没有来自辅助电源供应的输出电压所以继电器是开路电路。这避免了通过跨导 放大器460到地的涌入电流。禁止输入使得继电器在线故障的情况下成为开路电路。这避 免了电流从电容器星点90通过跨导放大器460流到地。固态继电器420具有可能妨碍RF 电流的通态残余阻抗(on-stateresidual impedance)。高通滤波器470制约电容器星点电压Vs。它拒绝电源频率并且将无线电频率传送 到跨导放大器的输入461。跨导放大器460的传递函数被表示为B(f)并且具有,例如,在 150kHz 的断点(break point)。跨导放大器460提供由差分电压输入Vi所控制的电流输出它被表征为依赖 频率的传递函数G (f)。所以输出电流为I0 (f) = G(f) · V^f) (2)
典型地可以用滞后-超前电路(lag-lead circuit)来修改G(f),以避免可以导 致振荡和不稳定的过度的相位偏移,如本领域内所知道的那样。提供过电流和过电压保 护以在高电势测试期间保护跨导放大器470并且保护跨导放大器470免受线瞬变(line transient)。通过内部反馈电阻提供DC偏置。跨导放大器460可以被电压放大器、或者任 何其它有源分流器件替代,如本领域内所知道的那样。从星点到地的阻抗根据以上等式,星点和地之间依赖频率的阻抗是Zs(f) =VS/I0 = 1/B(f) -G(f)0 注意SSR通态残余阻抗与Zs没有关系。高衰减中频段(mid-band)分流路径在中频段(在并且大于HPF断点)提供从电容器星点415到地的低RF 阻抗。典型地,Zs将小于导致高不对称模式衰减的1欧姆中频段。Zs矢量将具有实部因为 B(f)和G(f)具有实部。在HPF断点,Zs可能几乎是纯电阻。无源LC滤波器在他们地特征 频率处显示欠阻尼振荡(under-damped ringing)。此发明表现得更像LR滤波器并且因此 避免了过度振荡。低ιΗ常樽式漏地电流在电源频率处,高通滤波器470强烈衰减星点电压Vs所以Vi将接近0。所以跨导 放大器460在电源频率处实质上产生0电流并且漏地电流被最小化。在电源频率处,Zs接 近为开路电路。低接通漏地电流在接通时,因为辅助电源供应450关掉,所以固态继电器420是开路电路。所以星 点电压Vs可以摇摆到峰值线电压并且将没有接地电流通过跨导放大器460流到地。因此 涌入漏地电流将被最小化。相反,高的涌入漏地电流对无源LC滤波器而言是普遍的。低故障模式漏地电流在正常情况下,星点电压Vs将在电源频率处(主要的基波和低次谐波)变化。这 是由于相位电压的任何不平衡以及由于相位负载的不平衡造成的。高达20V rms的电压是 典型的。在这些情况下,固态继电器420依然关闭。在故障情况下,相对于地的星点电压降 显著增大。在TN供应中,电容器星点对于单个故障将增大到0. 5*\和对于双个故障将增大 到Vp,其中Vp是相位到中性rms的电压(phase toneutral rms voltage)。在IT供应中, 对于单个故障星点电压将是Vp。在所有这些情况下,电平鉴别器430提供禁止信号并且打开 固态继电器420。这将出现在设定时间内,该设定时间取决于电路的时间延迟以及所增加的 任何集成部件的时间常数。因此故障期间无源LC滤波器所经历的高稳态(steady-state) 都被避免。在IT系统中,不是经常使用无源LC滤波器因为在故障情况下损坏滤波器风险 以及不希望的系统跳闸。本发明中这个实施例的滤波器可以被合并在IT系统上而没有滤 波器或系统的风险。高电压隔离策略参考图4,相位和对地相位之间的耐受电压(voltage-withstand)相当于常规无 源LC滤波器。隔离部件为与相关的安全标准兼容的电容器和电阻。这意味着电容器优选地是自恢复涌流类型并且电阻是高阻抗的、高电压涌流类 型。X电容器网络提供相位之间的隔离,其相当于无源LC滤波器。在这个发明中,仅从星点
8进行对地连接。有5个地连接点。在图上这些被标注“HV”。在这些点处使用的部件提供对 地隔离。所有隔离部件的电路布局(layout)和集成必须包括适当的滞缓和间隙考虑。其 它的隔离方案也是可能的。对传导瞬变的不警影响电路对所有形式的传导瞬变(涌流,突变以及ESD)不受影响。目前为止这些中最 严重的是涌流。对称涌流以正常方式通过X电容器。有源电路已经被适用为耐受不对称涌 流事件。涌流电流将从星点通过固态继电器420和跨导放大器460。固态继电器420和跨 导放大器460中的每一个电源半导体通过内部电流限制来防止过电流。跨导放大器460和 固态继电器420每一个都通过并行的压敏电阻来防止过电压。这些在图4中被标注S。以上所描述的高电压策略及瞬变保护措施防止有源电路在高电势测试期间损坏。 这个实施例的滤波器可以经受如在相关滤波器标准中所要求的DC高电势测试。图7示出了根据本发明的一个方面,使用两个相同的模块800a/800b的两级滤波 器的实现的例子。每一个模块优选地被实现在PCB上并且包括跨导放大器460a/460b、高通 滤波器470a/470b、SSR开关420a/420b、“X”电容器阵列410a/410b以及鉴别器430a430/ b。辅助电源供应单元450是在模块之间共用的。重要地,用于线侧模块800a的供应线在 中心核403进行半圈旋转(half-turn),为了避免串扰。每一个模块800a/800b具有IDC器 件405a/405b以接触相位导体700。必须针对线导体700的每一个类型特别设计IDC连接器405a/405b,并且为每一种 可以想到的电缆类型去做不实际,或者如果相导体没有被绝缘。图8示意了本发明的可替 换实施例提供与图7中的实现等同的没有IDC连接器且没有到在线侧电感401和负载侧 电感402之间的相导体700的电连接的两级滤波器。这种情况中,模块800a/800b分别连 接到在线接线端409a处和负载接线端409b处的相导体。因为噪音导线417a和417b以及 感测导线415a和415b分别在线侧扼流圈401和负载侧扼流圈402中通过,在这些导线上 所感应的电动势(emf)等于在线导体700中的总的emf。感测导线415a、415b所感测的电 压因此与在X网络被插入在扼流圈之间的情况的相同,如在前面的例子中的一样。所以,滤波器与图7中的一个电气地等同并且基本有相同的频率响应。在感应器 401,402中通过感测导线415a/415b以及噪音导线417a/417b,一个产生等同于在感应器 401、402之间的连接的虚拟分流节点(VSN)。电缆长度的增加没有结果因为如已经看到的, 电缆的阻抗被放大器的增益补偿。本发明的滤波器的一个优点是它一直维持低漏地电流,因此与RCD器件兼容。另 一优点是简单的感应器结构,其中典型地,电源导体无需缠绕而直接通过滤波器。
权利要求
EMC滤波器,用于滤去电源线(700)上的噪音分量,包括至少一个在所述电源线上的感应器(401),分流模块(800),用于至少在给定的频率段内分流到地,所述电源线上的所述噪音分量包括提供表示所述电源线上的噪音分量的噪音信号(Vi)的高通滤波器(470),以及响应于所述噪音信号(Vi)将受所述噪音信号(Vi)控制的电流分流到地的受控源(460)。
2.根据前述权利要求所述的EMC滤波器,其中所述电源线是三相线,并且包括提供星 点(90)的电容器网络(410),其中所述受控源被连接在所述星点(90)和地电势之间,并且 所述高通滤波器(470)的输入被连接到所述星点(90)。
3.根据前述权利要求中的任何一个所述的EMC滤波器,进一步包括开关单元(420),其 被布置为检测故障情况并且在这个事件中将所述受控源(460)从所述电源线隔离开。
4.根据权利要求2所述的EMC滤波器,进一步包括在所述星点(90)和所述受控源 (460)之间插入的开关单元(420),以及响应于在所述星点(90)的电势,被布置为在所述星 点(90)的电势超过设定极限时检测故障情况,并且在这个事件中将所述受控源(460)从电 源线隔离开的电压鉴别器(430)。
5.根据前述权利要求所述的EMC滤波器,进一步包括错误输出,以用信号通知通过电 压鉴别器(430)所检测的所述故障情况。
6.根据权利要求4所述的EMC滤波器,其中所述开关单元包括固态继电器。
7.根据权利要求4所述的EMC滤波器,其中所述开关单元被布置为将所述受控源 (460)在接通电源时从电源线隔离开,以防止涌入电流。
8.根据前述权利要求中的任意一个所述的EMC滤波器,包括单独的到所述高通滤波器 (470)的输入的感测导线(415)。
9.根据前述权利要求中的任意一个所述的EMC滤波器,包括负反馈回路,其倾向于至 少在频率段内,稳定在恒定值的输入电势。
10.根据前述权利要求中的任意一个所述的EMC滤波器,包括至少一个高压额定的电 容器和/或至少一个高压额定电阻,以绝对地将电压导体与地电势隔离开。
11.根据前述权利要求中的任意一个所述的EMC滤波器,包括到电源线(700)的绝缘位 移连接器(405)的至少一个使用。
12.根据前述权利要求中的任意一个所述的EMC滤波器,至少包括线接线端(409a)和 负载接线端(409b),所述滤波器包括至少一个虚拟分流节点,而所述分流模块通过所述虚 拟分流节点被直接连接到所述线接线端或所述负载接线端。
13.一种用于至少在给定频率段内,将电源线上的噪音分量分流到地的有源分流模块 (800),其包括提供表示所述电源线上的噪音分量的噪音信号(Vi)的高通滤波器(470),以 及响应于所述噪音信号(Vi)将受所述噪音信号(Vi)控制的电流分流到地的受控源(460)。
14.根据前述权利要求所述的有源分流模块,其中所述电源线是三相线,并且包括提供 星点(90)的电容器网络(410)其中所述受控电流源被连接在所述星点(90)和所述地电势 之间,并且所述高通滤波器(470)的输入被连接到所述星点(90),以及被布置为检测故障 情况并且在这个事件中将所述受控源(460)与电源线隔开的开关单元(420)。
全文摘要
一种能够总是一直维持低漏地电流的EMC有源滤波器,因此与RCD器件兼容。本发明的滤波器具有特别简单的感应器结构,其中典型地电源导体直接通过滤波器而无需缠绕,并且多数部件可以被实施在模块化的分流电路内。优选地,通过由IDC器件将分流模块连接到相导体、或者直接将分流模块连接到线和负载接线端来实现滤波器,因此避免了切断并接合高电流电缆。滤波器的特定保护电路在接通电源时防止涌入电流,并且甚至在线故障的情况下限制漏地电流。
文档编号H02M1/12GK101897109SQ200780101921
公开日2010年11月24日 申请日期2007年10月10日 优先权日2007年10月10日
发明者A·C·特克 申请人:沙夫纳Emv股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1