激光电解射流复合加工分时控制系统及控制方法

文档序号:7434112阅读:353来源:国知局
专利名称:激光电解射流复合加工分时控制系统及控制方法
技术领域
本发明涉及一种脉冲电源及其与激光器电源的分时控制系统,该系统具有通过计 算机控制激光加工和电解射流加工进行分时加工的功能,适用于激光电解射流复合加工。
背景技术
随着航空航天、精密器械产品朝着精密化、集成化以及高性能、高可靠性的方向快 速发展,在产品零件中出现了大量形状各异的微结构,其中金属合金材料上的微细孔、型 槽、摩擦副表面微凹坑、表面纹理刻线等一系列典型微细结构在航空航天、精密器械等领域 有着广泛的应用,对微尺度结构加工技术有着迫切的需求。激光加工和电解加工都是在上世纪五、六十年代才开始发展起来的特种加工工 艺,由于其各具不同的优越性而得到发展和应用。这两种加工工艺都具有各自突出的特点, 在微结构的加工方面,激光加工易于实现加工过程的自动化、数字化。但激光加工后会在 加工表面产生厚度达0.01mm 0. Imm数量级的再铸层以及残余应力、微裂纹而影响疲劳 强度,例如在现代航空发动机上,其涡轮叶片、导向器叶片、燃烧室等高温工作零件上,设计 有几十个到数万个直径在0. Imm 1.5mm之间的气膜冷却孔,在冲击载荷、热载荷工作条 件下更严重影响零件使用的安全可靠性,因而限制了激光加工在航空、航天等高可靠性产 品中的应用。就一般产品而言,由于再铸层中所存在的微裂纹、残余应力,致使零件损坏而 出现事故的情况也时有发生。再铸层、微裂纹是激光加工的“唯一致命弱点(the Achilles heel) ”。电解加工作为一种基于电化学阳极溶解的减材加工技术,在加工过程中,工件阳极 上的金属原子不断地失去电子成为离子而从工件上溶解,其材料的减少过程是以离子的形 式进行。由于金属离子的尺寸非常微小,因此,这种微溶解去除方式使得电解加工技术在微 细制造领域有着很大的发展潜力和应用前景。电射流小孔加工工艺,原是国外综合比较激 光打孔、电子束打孔、电火花小孔加工方法存在的优缺点后,在金属型管电极小孔加工方法 基础上发展起来的一种小孔加工方法,其重要特点是表面不产生任何金相缺陷,加工表面 可达到无微裂纹、无变质层、无残余应力的“三无”效果,非常适合加工航空发动机高温涡轮 叶片的深小孔、孔轴线与表面夹角很小的斜孔和群孔。如果能将激光加工与电解加工进行复合,将可望达到优质高效的综合技术经济 效果。已获授权的国家发明专利《喷射液束电解-激光复合加工方法及装置》(专利号 ZL200610041595. 0)就是将激光加工与喷射液束电解电解加工进行复合,以激光加工为主 去除材料,喷射液束电解加工作用主要用于去除激光加工产生的再铸层,试验表明喷射液 束电解-激光复合加工具有较高的加工效率,且能有效减薄再铸层。但由于激光加工与 喷射液束电解加工是同时进行、同时结束,而且其喷射液束电解加工电压较低(一般低于 50V),虽能够有效减薄再铸层,但无法根除再铸层。

发明内容
技术问题本发明目的是针对现有技术存在的缺陷提供一种既能使得激光与电解射流同时复合加工,又能使得激光与电解射流分时组合加工的分时控制系统及控制方法, 以适用于激光电解射流的复合加工。技术方案本发明为实现上述目的,采用如下技术方案本发明激光电解射流复合加工分时控制系统,包括电压连续调节的直流稳压电源、脉冲发生电路、微处理器控制电路、功率放大电路、脉冲Nd:YAG激光器电源和过流保护 电路;脉冲发生电路输出端连接微处理器控制电路的输入端,微处理器控制电路的输出端 分别连接功率放大电路和脉冲Nd:YAG激光器电源的输入端,电压连续调节的直流稳压电 源和过流保护电路的输出端分别接微处理器控制电路的输入端,功率放大电路的输出端连 接喷嘴,工件连接电压连续调节的直流稳压电源的正极。所述的激光电解射流复合加工分时控制系统的控制方法,由电压连续可调的直流 稳压电源与脉冲发生电路构成脉冲电源,所述微处理器控制电路接口电路输出端A的电压 信号是高电平时,电压连续可调的直流稳压电源输出的直流电流流过电解射流加工接口 P ; 输出端A的电压信号是低电平时,电压连续调节的直流稳压电源输出的脉冲电流流过电解 射流加工接口 P;微处理器控制电路的计算机控制接口电路的输出端B是高电平时进行电 解射流加工,输出端B是低电平时停止电解射流加工;微处理器控制电路的计算机控制接 口电路的输出端C的电平信号由低电平上升为高电平时,触发脉冲Nd: YAG激光器电源产生 一个激光脉冲;通过控制微处理器控制电路(III)的计算机控制接口电路的输出端B和C, 实现激光加工和直流电解射流加工分时进行。有益效果对于已经开展研究的激光电解射流复合加工技术,目前存在以下几个 问题其中激光加工作用与电解射流加工作用是同时进行的,虽然取得了显著的减薄激光 加工产生的再铸层的效果,但很难甚至无法完全去除再铸层;且其电解射流加工中采用的 多为直流电源,其定域性较差,加工的孔、槽的锥度较大;电解射流加工施加的直流电场会 减弱激光加工的作用效果,使得激光加工的效率显著下降。针对以上问题,本发明专利中提 供的分时控制系统能够对激光加工和电解射流加工在加工时间匹配关系上进行控制,并通 过提高电解加工电压增强电解射流加工的作用效果,利用本发明提供的电解射流用高压脉 冲电源和激光器电源的分时控制系统调节激光加工与脉冲电解射流加工的作用时间匹配 关系,能够根除激光加工产生的再铸层,且不会因直流电场削弱激光加工效果,同时发挥激 光加工和电解射流加工的高效率,使之具有较高的综合加工效率,从而对航空航天、精密器 械中可靠性要求较高的零件上广泛存在的尺寸在0. Imm 1.5mm之间的小孔、窄槽、微凹 坑、纹理刻线等微结构的加工,可达到优质高效而又高表面质量之加工目标。


图1是直流电流和脉冲电流电源与分时控制系统的电路框图。图2是直流电流和脉冲电流电源与分时控制系统的电路原理图。图3是微处理器控制电路(III)输出端口 B和C的电平信号波形。
具体实施例方式下面结合附图对发明的技术方案进行详细说明如图1、2、3所示,实施例中的电源装置包括电压连续可调的直流稳压电源I,脉冲发生电路II,微处理器控制电路III,功率放大电路IV,脉冲Nd:YAG激光器电源电路V,过 流保护电路VI。脉冲发生电路II输出端连接微处理器控制电路III的输入端,微处理器控 制电路III输出端连接功率放大电路IV的输入端,功率放大电路IV的输出端连接喷嘴,工 件连接电压连续可调的直流稳压电源I的正极。霍尔电流传感器接在功率放大电路IV的 输出端与喷嘴之间的连线上,霍尔电流传感器的输出信号线连接在过流保护电路VI的输 入端,过流保护电路VI的输出端连接功率放大电路IV的输入端。微处理器控制电路III 的接口电路输出端C连接脉冲Nd: YAG激光器电源电路V的输入端D。所述微处理器控制电路III包括计算机、接口电路、第一和第二继电器K1、K2以及 第一和第二开关S1、S2,其中计算机的输出端接接口电路的输入端,接口电路的输出端A接 第一继电器Kl的输入端,接口电路的输出端B接第二继电器K2的输入端,接口电路的输出 端C接脉冲Nd:YAG激光器电源V的输入端,第一继电器Kl与第一开关Sl对应吸合设置, 第二继电器K2与第二开关S2对应吸合设置,第一开关Sl的2、3脚为常闭,第一开关Sl的 1、3脚为常开,第二开关S2的1、2脚为常开,第一开关Sl的3脚与第二开关S2的1脚连 接,第一开关Sl的1脚接直流电源VCC,第一开关Sl的2脚接脉冲发生电路II的输出端, 第二开关S2的2脚接功率放大电路IV的输入端。所述功率放大电路IV由电阻R3、复合三极管Q1、功率开关管Q2、喷嘴与工件组成 的电解射流加工接口 P组成,电解射流加工接口 P设置于功率开关管Q2的输出极与电压连 续调节的直流稳压电源I的正极之间,功率开关管Q2的源极分别与第三电阻R3的一端和 复合三极管Ql的发射极连接接地,电阻R3的另一端分别接复合三极管Ql的基极、微处理 器控制电路III的输出端连接过流保护电路VI的输出端,复合三极管Ql的集电极接功率 开关管Q2的栅极。实施例1,激光-直流电解射流的分时加工。微处理器控制电路III中的开关S2 闭合和Sl开关1、3连接时,高电平信号输入功率放大电路IV,使功率放大电路IV的复合三 极管Q1、功率开关管Q2导通,Q2的导通使喷嘴接电源负极,于是在电源负极、喷嘴、喷射液 束、工件、电源正极形成电流回路,产生的直流电流对工件进行阳极电解溶解即直流电解加 工。在直流电解射流加工的同时,微处理器控制电路III的接口电路输出端B和C的电平 信号波形是分时的,见图3,使激光加工和直流电解射流加工分时进行。在本实施例中,微处理器控制电路III的接口电路输出端A为高电平时,继电器K1 吸合,开关Sl的1、3端连接。接口电路输出端B为高电平时,继电器K2吸合,开关S2闭 合;接口电路输出端B为低电平时,继电器K2不吸合,开关S2断开。在本实施例的激光加 工中,接口电路输出端C输出脉冲信号的上升沿触发激光脉冲加工。实施例2,激光-脉冲电解射流的分时加工。微处理器控制电路III中的开关S2 闭合和Sl开关2、3连接时,脉冲信号输入功率放大电路IV,使功率放大电路IV的复合三极 管Q1、功率开关管Q2产生脉冲导通,Q2的导通使喷嘴接电源负极,于是在电源负极、喷嘴、 喷射液束、工件、电源正极回路中产生脉冲电流,脉冲电流对工件进行脉冲电解。在脉冲电 解射流加工的同时,微处理器控制电路III的接口电路输出端B和C的电平信号波形是分 时的,见图3,使激光加工和脉冲电解射流加工分时进行。在本实施例中,微处理器控制电路III的接口电路输出端A为低电平时,继电器Kl不吸合,开关Sl的2、3端连接。接口电路输出端B为高电平时,继电器K2吸合,开关S2闭合;接口电路输出端B为低电平时,继电器K2不吸合,开关S2断开。在本实施例的激光加工中,接口电路输出端C输出脉冲信号的上升沿触发激光脉冲加工。
在实施例1和2中,过流保护电路VI中的霍尔电流传感器测得的电解加工电流值 小于可调电阻R8设定的电流值,过流保护电路VI中的比较器LM311输出低电平,晶闸管 SCR截止,电解加工的电平信号能正常通过微处理器控制电路III输出端进入功率放大电 路IV输入端,进行正常电解加工;霍尔电流传感器测得的电解加工电流值大于可调电阻R8 设定的电流值,比较器LM311输出高电平,使晶闸管SCR导通,从微处理器控制电路III输 出的电解加工电平信号被晶闸管SCR导通接地,功率放大电路IV的Ql、Q2截止,从而停止 电解加工。
权利要求
一种激光电解射流复合加工分时控制系统,其特征在于包括电压连续可调的直流稳压电源(I)、脉冲发生电路(II)、微处理器控制电路(III)、功率放大电路(IV)、脉冲Nd:YAG激光器电源(V)和过流保护电路(VI);脉冲发生电路(II)输出端连接微处理器控制电路(III)的输入端,微处理器控制电路(III)的输出端分别连接功率放大电路(IV)和脉冲Nd:YAG激光器电源(V)的输入端,电压连续可调的直流稳压电源(I)和过流保护电路(VI)的输出端分别连接微处理器控制电路(III)的输入端,功率放大电路(IV)的输出端连接喷嘴,工件连接电压连续可调的直流稳压电源(I)的正极。
2.如权利要求1所述的激光电解射流复合加工分时控制系统,其特征在于所述微处理 器控制电路(III)包括计算机、接口电路、第一和第二继电器(K1、K2)以及第一和第二开 关(S1、S2),其中计算机的输出端接接口电路的输入端,接口电路的输出端A接第一继电器 (K1)的输入端,接口电路的输出端B接第二继电器(K2)的输入端,接口电路的输出端C接 脉冲Nd:YAG激光器电源(V)的输入端,第一继电器(K1)与第一开关(S1)对应吸合设置, 第二继电器(K2)与第二开关(S2)对应吸合设置,第一开关(S1)的2、3脚为常闭,第一开 关(S1)的1、3脚为常开,第二开关(S2)的1、2脚为常开,第一开关(S1)的3脚与第二开 关(S2)的1脚连接,第一开关(S1)的1脚连接直流电源VCC,第一开关(S1)的2脚接脉冲 发生电路(II)的输出端,第二开关(S2)的2脚接功率放大电路(IV)的输入端。
3.如权利要求1所述的激光电解射流复合加工分时控制系统,其特征在于所述功率放 大电路(IV)由电阻R3、复合三极管Q1、功率开关管Q2、喷嘴与工件组成的电解射流加工接 口 P组成,电解射流加工接口 P设置于功率开关管Q2的输出极与电压连续可调的直流稳压 电源(I)的正极之间,功率开关管Q2的源极分别与电阻R3的一端和复合三极管Q1的发射 极连接接地,电阻R3的另一端分别接复合三极管Q1的基极、微处理器控制电路(III)的输 出端和过流保护电路(VI)的输出端,复合三极管Q1的集电极接功率开关管Q2的栅极。
4.一种如权利要求1所述的激光电解射流复合加工分时控制系统的控制方法,其特征 在于由电压连续可调的直流稳压电源(I)与脉冲发生电路(II)构成脉冲电源,所述微处理 器控制电路(III)接口电路输出端A的电压信号是高电平时,电压连续可调的直流稳压电 源(I)输出的直流电流流过电解射流加工接口 P ;输出端A的电压信号是低电平时,电压连 续可调的直流稳压电源(I)输出的脉冲电流流过电解射流加工接口 P ;微处理器控制电路 (III)的计算机控制接口电路的输出端B是高电平时进行电解射流加工,输出端B是低电平 时停止电解射流加工;微处理器控制电路(III)的计算机控制接口电路的输出端C的电平 信号由低电平上升为高电平时,触发Nd:YAG激光器电源(V)产生一个脉冲激光,通过控制 微处理器控制电路(III)的计算机控制接口电路的输出端B和C,实现激光加工和直流电解 射流加工分时进行。
全文摘要
本发明公布了一种激光电解射流复合加工分时控制系统及控制方法,本发明系统包括电压连续可调的直流稳压电源,脉冲发生电路,微处理器控制电路,功率放大电路,脉冲Nd:YAG激光器电源电路,过流保护电路。本发明方法通过脉冲发生电路的可调电位器调节电解射流加工用脉冲电源的频率和占空比,通过微处理器控制电路中的输出端,计算机控制电源装置输出直流电流或高频脉冲电流,并能够实现高频脉冲电解射流加工和激光加工的分时作用。
文档编号H02M9/00GK101829819SQ20101001793
公开日2010年9月15日 申请日期2010年1月15日 优先权日2010年1月15日
发明者余毅权, 吴彦农, 徐家文, 王超恒, 袁立新, 赵建社, 黄巍 申请人:南京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1