直流到三相交流逆变器系统的制作方法

文档序号:7331870阅读:357来源:国知局
专利名称:直流到三相交流逆变器系统的制作方法
技术领域
本发明涉及 一种直流到三相交流逆变器系统(下文中称为“DC到三相AC逆变器系统”),其中直流电源(下文中称为“DC电源”)在三相电动机的中性点处连接到三相电动机。
背景技术
当在三相电动机的逆变器电路中直流电压(下文中称为“DC电压”)下降时,逆变器电路需要大电流以获得与DC电压下降之前输出的电压相同的输出电压。为了满足该需要,可在逆变器电路中布置具有高额定电流的开关元件或升压电路。如果采取了这样的措施,则增大了开关元件的尺寸,以及需要将升压电路添加到逆变器电路中,使得逆变器电路的尺寸变大,从而增加了逆变器电路的成本。为了解决该问题,例如,由日本专利申请公开第10-337047号提出了一种DC到三相AC逆变器,其中,连接到三相电动机的中性点的DC电源的电压被升压从而对电容器充电,电容器的DC电力转换为要提供到三相电动机的三相AC电力。在以上公开中公开的DC 到三相AC逆变器系统中,可通过在逆变操作的零电压矢量区域中执行升压操作来实现逆变操作和升压操作两者。因此,逆变器电路不需要用于大电流应用的大尺寸开关元件。在 DC到三相AC逆变器系统中,三相电动机的零相电感可作为升压操作的电抗器,使得除逆变器电路之外不需要将升压电路添加在DC到三相AC逆变器系统中。在上述DC到三相AC逆变器系统中,如果电压不足以驱动升压比为2或更小的三相电动机,当电压命令的幅度变得大于电容器的电压的幅度时,通过过调制脉冲宽度调制控制(下文中称为“PWM控制”)执行逆变操作。参见图3,在过调制区域Tl中,用于U相上臂的开关元件的驱动信号Sl持续处于高电平,并且当通过过调制PWM控制执行逆变操作时,U相上臂的开关元件持续接通。在过调制区域T2中,驱动信号Sl持续处于低电平并且 U相上臂的开关元件持续关断。在U相下臂的开关元件不接通的过调制区域Tl中,在三相电动机的电感中不充电,使得不能执行升压操作。在U相上臂的开关元件不接通的过调制区域T2中,对电容器不释放三相电动机的电感中存储的能量,使得不执行升压操作。V相和W相的情况也是一样的。在上述DC到三相AC逆变器系统中,当通过过调制PWM控制执行逆变操作时,可能无法执行升压操作,因此在受限范围内执行三相电动机的操作。本发明旨在提供一种DC到三相AC逆变器系统,其中,DC电源在三相电动机的中性点处连接到三相电动机,所述DC到三相AC逆变器系统防止当通过过调制PWM控制执行逆变器系统的逆变操作时在受限范围内执行三相电动机的操作。

发明内容
结合附图,根据示例地描述本发明原理的以下说明,本发明的其它方面和优点将
变得明显。—种直流到三相交流逆变器系统,包括三相电动机、逆变器电路、多个开关元件、电容器、直流电源和控制电路。三相电动机具有第一到第三相。逆变器电路用于三相电动机。在逆变器电路中布置开关元件。每个开关元件执行切换操作。开关元件分别作为三相电动机的相应的三个相的上臂和下臂。电容器并联连接到各对上臂和下臂。在三相电动机的中性点与各上臂之间或在三相电动机的中性点与各下臂之间布置直流电源。控制电路计算用于驱动三相电动机的电压命令,通过对用于使电容器的电压为特定值的升压命令分压来计算第一到第三分压升压命令,以及基于电压命令和第一到第三分压升压命令计算用于控制第一到第三相的开关元件的切换操作的第一到第三驱动信号。当在第一相的开关元件持续接通或关断的同时通过接通和关断第二和第三相的开关元件来执行脉冲宽度调制控制时所使用的第二和第三分压升压命令被设置为大于当通过接通和关断第一到第三相的开关元件来执行脉冲宽 度调制控制时所使用的第二和第三分压升压命令。


结合附图,参考当前优选实施例的以下说明,可以最佳地理解本发明及其目的和优点。图1是表示根据本发明的优选实施例的DC到三相AC逆变器系统的电路图;图2是表示图1中DC到三相AC逆变器系统的比较元件的操作的流程图;以及图3是表示当通过根据图1的DC到三相AC逆变器系统的过调制PWM控制来执行逆变操作时用于U相上臂的开关元件的驱动信号的波形图。
具体实施例方式下面将参考图1至图3描述根据本发明优选实施例的DC到三相AC逆变器系统。 一般用附图标记1指示DC到三相AC逆变器系统,该系统包括电容器2、逆变器电路3、诸如压缩机的三相电动机的三相电动机4、DC电源5、诸如旋转变压器或编码器的旋转角传感器 6、电流传感器7、诸如中央处理单元(CPU)的控制电路8以及驱动电路9。DC到三相AC逆变器系统1可以没有旋转角传感器6,而是可以这样地布置通过计算来确定旋转角,即“无传感器控制”。具有U相、V相和W相三相的三相电动机4的逆变器电路3包括六个开关元件10 至IJ 15,例如金属氧化物半导体场效应晶体管(MOSFET)或与二极管并联连接的双极性晶体管。开关元件10、11彼此串联连接并分别作为三相电动机4的U相的上臂和下臂。开关元件12、13彼此串联连接并分别作为三相电动机4的V相的上臂和下臂。开关元件14、15彼此串联连接并分别作为三相电动机4的W相的上臂和下臂。各对开关元件10、11、开关元件12、13以及开关元件14、15彼此并联连接并且连接到电容器2。换言之,电容器2并联连接到各对开关元件10、11、开关元件12、13以及开关元件14、15。用作各相下臂的开关元件 11、13、15的低压端子连接到DC电源5的负端子,而DC电源5的正端子连接到三相电动机 4的中性点。当根据来自驱动电路9的驱动信号Sl到S6接通和关断各开关元件10到15时, 来自电容器2的DC电力被转换成三个相彼此偏移120度的三相AC电力,随后三相AC电力被提供到三相电动机4并驱动三相电动机4。当电流沿与DC电源5的DC电力的放电方向相同的方向在三相电动机4的中性点处流动并且用作一个相的下臂的开关元件11、13、15中的任意一个接通时,来自DC电源 5的能量被存储在三相电动机4的电抗器中,该电抗器连接到处于接通状态的下臂开关元件。随后,处于接通状态的下臂开关元件关断时,通过与处于关断状态的下臂开关元件成对的上臂开关元件将电抗器中存储的能量提供到电容器2并存储在电容器2中。因此,除了由来自DC电源5的DC电力分量之外还由从逆变器电路3提供的三相AC电力来驱动三相电动机4,使得在三相电动机4的中性点处的电势低于DC电源5的电势。因此,电流沿与 DC电源5放电方向相同的方向在三相电动机4的中性点处流动,以及用来自DC电源5的能量对电容器2充电。此外,除了由来自DC电源5的DC电力分量之外还由从逆变器电路 3提供的三相AC电力来驱动三相电动机4,使得三相电动机4的中性点的电势高于DC电源 5的电势。在这种情况下,电流沿与D C电源5充电方向相同的方向在三相电动机4的中性点处流动,以及用来自电容器2的能量对DC电源5充电。本发明优选实施例的DC到三相AC逆变器系统1可将来自电容器2的DC电力转换为三相AC电力并将三相AC电力提供到三相电动机,同时将DC电源5的电压升压以对电容器2充电。因此,除逆变器电路3之外,不需要在DC到三相AC逆变器系统1中提供升压电路或抵消电路,使得DC到三相AC逆变器系统1尺寸减小。下面将详细描述控制电路8。控制电路8包括转速计算器16、3_2轴转换器17、电压命令发生器18、比较元件19以及驱动信号发生器20、21。控制电路8生成驱动信号Su、 Sv, Sw的周期基本上等于或长于用于生成驱动信号Su、Sv, Sw的三角波的周期的一半。旋转角传感器6检测三相电动机4的转子的旋转角θ。电流传感器7检测流经三相电动机4 的U相、V相和W相的电流Iu、Iv、Iw以及在三相电动机4的中性点处流动的电流Idc。电流传感器7可适于检测四个电流Iu、Iv、Iw, Idc中的三个,而第四个电流可通过计算确定。转速计算器16基于三相电动机4的转子的旋转角θ和驱动三相电动机4的时间来计算三相电动机4的转子的转速ω。3-2轴转换器17将电流Iu、Iv、Iw转换为两个电流分量,其中,上述两个电流分量包括沿与三相电动机4的磁场方向相同的方向流动的电流 Id和沿与三相电动机4的磁场方向垂直的方向流动的电流Iq。电压命令发生器18包括电流控制器21和2-3轴转换器22。电流控制器21基于转速ω、电流Id、Iq以及来自外部,例如在DC到三相AC逆变器系统1的上侧的控制电路的扭矩命令T来生成电压命令Vd、Vq。具体地,电流控制器21使用存储有表示电流命令Id *、Iq *与扭矩命令T之间关系的数据的表格,来根据扭矩命令T确定电流命令Id*、Iq *。电流控制器21确定电流命令IcT与电流Id之间的差Δ Id以及电流命令Iq*与电流Iq之间的差Δ Iq0随后,电流控制器21通过比例积分控制确定使得差Δ Id、Δ Iq中的每个值为零的电压命令Vd、Vq。例如,根据下面的等式1、2确定电压命令Vd、Vq。等式1 Vd = KpX Δ Id+ / (KiX Δ Id)-ω LqIq等式2 Vq = Kp X Δ Iq+ f (Ki X Δ Iq) - ω LdId+ ω Ke在以上等式1和2中,Kp表示比例常数,Ki表示积分常数,Ld表示d轴电感,Lq 表示q轴电感,Id表示d轴电流,Iq表示q轴电流,以及Ke表示电感电压常数。
2-3轴转换器22将电压命令VcUVq分别转换为U相、V相、和W相的逆变器电压命令m比较单元19基于升压命令V*、电容器2的电压Vinv以及电压命令Vu、Vv、 Vw来确定电压命令Vu *、Vv *、Vw *。升压命令V *是用于使得来自外部的电容器2的期望电压与电容器2的测量电压之间的差为零的值。图2是表示比较元件19的操作的流程图。在步骤Sl处,比较元件19确定逆变器电压命令Vu、Vv、Vw是否大于电压Vinv。如果在步骤Sl处为“否”,或者当逆变器电压命令Vu、Vv、Vw不大于电容器2的电压Vinv时(即通过一般的PWM控制执行逆变操作时,或通过接通和关断相应的三个相的开关元件执行PWM控制时),比较元件19使升压命令V *变为三分之一,随后在步骤2基于三分之一升压命令(分压升压命令)V *和电压命令Vu、Vv、Vw来确定电压命令Vu *、Vv *、V w *。例如,比较元件19通过将三分之一升压命令V *添加到各个电压命令Vu、Vv、Vw来确定电压命令Vu*、Vv*、Vw*。如果在步骤Sl处为“是”,或者当逆变器电压命令Vu、Vv、Vw大于电压Vinv时(即当通过过调制PWM控制执行逆变操作时,或者当通过接通和关断两个相的开关元件同时另一相的开关元件持续接通或关断来执行PWM控制时),比较元件19在步骤S3确定U相上臂或下臂的开关元件是否持续接通。例如,如果U相的电压命令Vu大于电压Vinv,比较元件 19确定U相上臂或下臂的开关元件持续接通。如果在步骤S3处为“是”,比较元件19使升压命令V *变为二分之一,并随后在步骤S4基于作为分压升压命令的二分之一升压命令V *以及电压命令Vu、Vv、Vw确定电压命 NuH*。例如,比较元件19通过将二分之一升压命令V *分别添加到电压命令 Vv、Vw来确定电压命令Vv *、Vw *,以及确定与电压命令Vu —样的电压命令Vu *。同时,如果在步骤S3处为“否”,比较元件19在步骤S5确定V相上臂或下臂的开关元件是否持续接通。例如,如果V相的电压命令Vv大于电压Vinv,比较元件19确定V相上臂或下臂的开关元件持续接通。如果在步骤S5处为“是”,比较元件19使升压命令V *变为二分之一,以及随后在步骤S6基于作为分压升压命令的二分之一升压命令V *以及电压命令Vu、Vv、Vw确定电压命令Vu \Vv\Nw\例如,比较元件19通过将二分之一升压命令V *分别添加到电压命令 Vu、Vw来确定电压命令Vu *、Vw *,以及确定与电压命令Vv —样的电压命令Vv *。如果在步骤S5处为“否”,比较元件19使升压命令V *变为二分之一,以及随后在步骤S7基于作为分压升压命令的二分之一升压命令V *以及电压命令Vu、Vv、Vw来确定电压命令Vu \Vv\Nw\例如,比较元件19通过将二分之一升压命令V *分别添加到电压命令Vu、Vv来确定电压命令Vu *、Vv *,以及确定与电压命令Vw —样的电压命令Vw *。通过过调制PWM控制执行逆变操作,将二分之一电压命令V*添加到除上臂或下臂的开关元件持续接通的相之外的相的电压命令上。这样,通过过调制PWM控制执行逆变操作,电容器2的电压在驱动三相电动机4的同时保持在预定值处。将来自比较单元19的电压命令Vu *、Vv *、Vw *之一与三角波相比,图1中示出的驱动信号发生器20生成作为各相的第一到第三驱动信号的驱动信号Su、Sv、Sw。例如,驱动信号发生器20在电压命令Vu*大于三角波时生成作为驱动信号Su的高电平的驱动信号, 并在电压命令Vu*小于三角波时生成作为驱动信号Su的低电平的驱动信号。另外,驱动信号发生器20在电压命令Vv *大于三角波时生成作为驱动信号Sv的高电平的驱动信号,并在电压命令Vv*小于三角波时生成作为驱动信号Sv的低电平的驱动信号。而且,驱动信号发生器20在电压命令Vw*大于三角波时生成作为驱动信号Sw的高电平的驱动信号,并在电压命令Vw *小于三角波时生成的作为驱动信号Sw低电平的驱动信号。驱动电路9通过使用驱动信号Su、Sv和Sw分别生成到开关元件10到15的驱动信号Sl到S6。例如,驱动电路9生成驱动信号Su作为到开关元件10的驱动信号Si,以及生成通过对驱动信号Su进行逆变而产生的驱动信号作为到开关元件11的驱动信号S2。驱动电路9生成驱动信号Sv作为到开关元件12的驱动信号S3,生成通过对驱动信号Sv进行逆变而产生的驱动信号作为到开关元件13的驱动信号S4。驱动电路9生成驱动信号Sw 作为到开关元件14的驱动信号S5,生成通过对驱动信号Sw进行逆变而产生的驱动信号作为 到开关元件15的驱动信号S6。根据本发明优选实施例的DC到三相AC逆变器系统1,在通过过调制PWM控制执行逆变操作时为驱动三相电动机4而生成驱动信号Su、Sv, Sw的同时,将电容器2的电压添加到除开关元件持续接通的相之外的相的驱动信号上,从而将电容器2的电压保持在预定值处。因此,如果通过过调制PWM控制执行逆变操作,将电容器2的电压设置到用于驱动三相电动机4的期望值。因此,防止了三相电动机4的操作范围受限制。可减少当通过过调制PWM控制执行逆变操作时流经三相电动机4的电流的失真,以便可减少扭矩波动或零相电流波动(或流经三相电动机4的中性点的电流的波动)。在根据本发明优选实施例的DC到三相AC逆变器系统中,DC源5布置在三相电动机4的中性点与逆变器电路3的开关元件11、13、15的下臂之间。替选地,DC源5可布置在三相电动机4的中性点与逆变器电路3的开关元件10、12、14的上臂之间。在该结构中, 控制电路8控制开关元件10到15的切换操作,以便将在三相电动机4的中性点处流动的电流补偿成正的。
权利要求
1.一种直流到三相交流逆变器系统(1),包括 具有第一到第三相的三相电动机(4); 用于所述三相电动机⑷的逆变器电路⑶;布置在所述逆变器电路(3)中的多个开关元件(10,11,12,13,14,15),每个开关元件 (10,11,12,13,14,15)执行切换操作,所述开关元件(10,11,12,13,14,15)分别用作所述三相电动机(4)的相应的三个相的上臂(10,12,14)和下臂(11,13,15);电容器(2),其并联连接到各对所述上臂(10,12,14)和下臂(11,13,15); 直流电源(5),其布置在所述三相电动机(4)的中性点与所述各个上臂(10,12,14)之间或在所述三相电动机(4)的中性点与所述各个下臂(11,13,15)之间;以及控制电路(8),其计算用于驱动所述三相电动机⑷的电压命令(Vu、Vv、Vw),通过对升压命令(T)分压来计算用于使电容器(2)的电压为预定值的第一到第三分压升压命令,以及基于所述电压命令(Vu、Vv、Vw)和所述第一到第三分压升压命令计算用于控制所述第一到第三相的所述开关元件(10,11,12,13,14,15)的切换操作的第一到第三驱动信号(Su、 Sv λ Sw),其中,当在所述第一相的开关元件(10,11,12,13,14,15)持续处于接通或关断状态的同时通过接通和关断所述第二和第三相的开关元件(10,11,12,13,14,15)来执行所述脉冲宽度调制控制时所使用的所述第二和第三分压升压命令被设置为大于当通过接通和关断所述第一到第三相的开关元件(10,11,12,13,14,15)来执行所述脉冲宽度调制控制时所使用的所述第二和第三分压升压命令。
2.根据权利要求1所述的直流到三相交流逆变器系统(1),其中,当在所述第一相的开关单元(10,11,12,13,14,15)持续处于接通或关断状态的同时通过接通和关断所述第二和第三相的开关元件(10,11,12,13,14,15)来执行所述脉冲宽度调制控制时所使用的所述第二和第三分压升压命令被设置为等于所述升压命令(V*)的二分之一,以及当通过接通和关断所述第一到第三相的开关元件(10,11,12,13,14,15)来执行所述脉冲宽度调制控制时所使用的所述第一到第三分压升压命令被设置为等于所述升压命令(V*)的三分之
全文摘要
公开了一种直流(DC)到三相交流(AC)逆变器系统。该DC到三相AC逆变器系统包括三相电动机、逆变器电路、开关元件、电容器、DC电源以及控制电路。DC电源在三相电动机的中性点处与三相电动机连接。控制电路计算电压命令、通过对升压命令分压来计算第一到第三分压升压命令、以及基于电压命令和第一到第三分压升压命令计算第一到第三驱动信号。当在第一相的开关元件持续处于接通或关断状态的同时通过接通和关断第二和第三相的开关元件来执行PWM控制时所使用的第二和第三分压升压命令被设置为大于当通过接通和关断第一到第三相的开关元件来执行PWM控制时所使用的第二和第三分压升压命令。
文档编号H02P6/18GK102208878SQ20111008366
公开日2011年10月5日 申请日期2011年3月30日 优先权日2010年3月31日
发明者名嶋一记, 成瀬拓也 申请人:株式会社丰田自动织机
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1