基于三电平逆变技术的高压无功补偿控制方法

文档序号:7466092阅读:256来源:国知局
专利名称:基于三电平逆变技术的高压无功补偿控制方法
技术领域
本发明涉及一种基于三电平逆变技术的高压无功补偿控制方法,属于电能质量管理领域。
背景技术
SVG技术是最新的动态无功补偿技术,它采用新一代电力电子元器件,采用AC/DC/AC的方式,加配置的移相变压器,和现代计算机控制技术实现动态的计算、控制和补偿, 装置具有输出谐波含量低,响应速度快、可靠性高的特点,完全不同于传统的固定式电容器补偿及采用晶闸管控制的SVC补偿装置。相对于SVC技术,具有遏制电网扰动能力大、响应速度快、占地面积小、节能等优势,但是目前国内运行业绩很少、投资较高,而且在高电压等级上,SVG技术还不够成熟。多电平逆变技术近年来以其独特的优点在大功率、高电压应用场合受到广泛的关注和研究。对于η电平的逆变器,每个功率器件承受的电压仅为母线电压的1/(η-1),实现了用低压器件来实现高压大功率输出,对改善谐波性能,减少波形畸变起到了积极的作用;多电平的du/dt的减小对电机绝缘十分有利,防止了电机转子绕组绝缘击穿,其输出无需变压器,大大减小了系统的体积和损耗,此外,多电平逆变技术还具备共模电压小、电磁干扰小、系统效率高等特点,因此在高电压大功率的变频调速、静止无功补偿、电力有源滤波器装置、高压直流输电等方面有着广阔的应用前景。

发明内容
本发明的目的在于克服现有技术的缺陷而提供一种基于三电平逆变技术的高压无功补偿控制方法,采用三相三电平逆变技术,降低了电力电子元器件所承受的最大电压,可最优化选择输出状态,应用于高压无功补偿装置。实现上述目的的技术方案是一种基于三电平逆变技术的高压无功补偿控制方法,其特征在于,所述高压无功补偿的控制方法包括首先,通过检测得到系统需要补偿的无功电流;第二,通过电流滞环控制器得到的信号值记为当前状态;第三,分别计算和记录三电平逆变电路的27个逆变器电压矢量作用后系统的无功变化情况;第四,将系统的无功变化情况和滞环控制器得到的结果相比较,在27个逆变器电压矢量中选取适用的逆变器电压矢量,进行控制。所述的步骤四中,如果有多个逆变器电压矢量满足,选取最优作用矢量。所述的选取最优作用矢量的判定方法为根据直接控制性质的最优准则选取,选择最接近电网电压微量的逆变器电压矢量。本发明的有益效果是采用三电平的电路拓扑结构,能有效的降低开关元器件需要承受的电压等级,使其可以应用于更高的电压等级场合。使用多电压矢量控制,大大改善了输出电压波形,在满足相应无功功率补偿的前提下,能有效的降低开关频率,减少IGBT元件的关断损耗,工作稳定且可靠性高。仿真结果验证了该技术在高电压等级下无功补偿的优越性。


图I是本发明中基于三电平逆变技术的高压无功补偿电路拓扑结构图;图2是本发明中基于三电平逆变技术的高压无功补偿装置电压矢量图;图3是本发明中基于三电平逆变技术的高压无功补偿装置无功功率不变化轨迹;
其中C1、C2电容 T1-T12、开关 D1-D18、二极管 L1-L3、电感。
具体实施例方式下面将结合附图对本发明作进一步说明。如图I所示,为本发明中基于三电平逆变技术的高压无功补偿电路拓扑结构图,开关Tl和T4相当于二电平电路中的上下互补开关管,而开关T2、T3与二极管D2、D3构成中点箝位电路。交流侧仍然与二电平相同,直流侧由2个电容Cl、C2相连,其连结中点与二极管D5、D6中点相连,中点电位Vm。三电平高压无功补偿装置的工作原理在于通过开关(IGBT)开断的变化使得交流侧线电流可控,根据需求输出相应的无功功率。三相分别通过电感L1-L3连接电网U、V、W相。如图2所示,为本发明中基于三电平逆变技术的高压无功补偿装置电压矢量图,三电平逆变器的相电压输出分为3种状态P、O、N。以单相为例,当开关Tl和T2导通,开关T3和T4关断时,U相输出端接到直流母线的正端P,当定义O点为参考地时,此时U相输出电压为Vcdl,称之为输出正电压(P状态);当了2和T3导通,Tl和T4关断时,U相输出电压为零,称之为输出零电压(O状态);当13和T4导通,Tl和T2关断时,U相输出电压为-Vcd2,称之为输出负电压(N状态)。和二电平的8种工作状态相比,三相三电平电路可能存在27种工作状态,因此开关表的设定比较复杂,硬件实现难度较大,通过滞环控制器得到的信号值记为当前状态,同时分别计算27个逆变器电压矢量作用后,系统的有功无功和中点电压变化情况,和滞环控制器得到的结果相比较,在这其中选取适用的逆变器电压矢量,如果有多个矢量满足,可以通过设定一通用的判定方法加以解决,在27个逆变器电压矢量中选取最优作用矢量。此通用的判定算法在交流电源电压向量的角度和大小变化时同样适用。由于Aqi=-A iq,对于整个系统来说,dq=0的条件是电压矢量在q轴(即Vi的正交轴)上的投影为零,即Vi与所选定的电压向量有相同的角度。因此,α-β平面被分为2个部分一部分是无功功率增长,另一部分是无功功率减少。这2个部分是由选出的电压矢量定义的正负2个半平面。所以,如果电网电压Vi在某个电压矢量确定的正半平面内,那么选择这个电压矢量会产生和增加无功功率;反之,无功功率会减少。逆变器电压向量V2的无功不变化的轨迹如附图3虚线所示。电网电压Vi在电压向量V2的负半平面内,选择V2无功功率将减少。对于一电网电压向量Vi,用与二电平相同的方法,得到滞环输出信号Sp2。以及Sq2。,同时分别计算27个电压矢量作用后判断其使有功无功或增长或减少,和滞环输出信号比较,选择合适的电压矢量,继而控制各个IGBT的开断,使整个系统稳定地运行。以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不 脱离本发明的精神和范围的情况下,还可以作出各种变换或变型,因此所有等同的技术方案也应该属于本发明的范畴,应由各权利要求所限定。综上所述,本发明基于三电平逆变技术的高压无功补偿技术,采用三电平的电路拓扑结构,能有效的降低开关元器件需要承受的电压等级,使其可以应用于更高的电压等级场合。使用多电压矢量控制,大大改善了输出电压波形,在满足相应无功功率补偿的前提下,能有效的降低开关频率,减少IGBT元件的关断损耗,工作稳定且可靠性高。仿真结果验证了该技术在高电压等级下无功补偿的优越性。
权利要求
1.一种基于三电平逆变技术的高压无功补偿控制方法,其特征在于所述高压无功补偿的控制方法包括 首先,通过检测得到系统需要补偿的无功电流; 第二,通过电流滞环控制器得到的信号值记为当前状态; 第三,分别计算和记录三电平逆变电路的27个逆变器电压矢量作用后系统的无功变化情况; 第四,将系统的无功变化情况和滞环控制器得到的结果相比较,在27个逆变器电压矢量中选取适用的逆变器电压矢量,进行控制。
2.根据权利要求I所述的基于三电平逆变技术的高压无功补偿控制方法,其特征在于所述的步骤四中,如果有多个逆变器电压矢量满足,选取最优作用矢量。
3.根据权利要求2所述的基于三电平逆变技术的高压无功补偿控制方法,其特征在于所述的选取最优作用矢量的判定方法为根据直接控制性质的最优准则选取,选择最接近电网电压微量的逆变器电压矢量。
全文摘要
一种基于三电平逆变技术的高压无功补偿控制方法,属于电能质量管理领域。本发明公开了一种基于三电平逆变技术的高压无功补偿控制方法,包括通过检测得到系统需要补偿的无功电流,通过电流滞环控制器得到的信号值记为当前状态,分别计算27个逆变器电压矢量作用后,系统的无功变化情况和滞环控制器得到的结果相比较,在这其中选取适用的逆变器电压矢量,此外,如有多个矢量满足,设定了一通用的判定方法加以解决,在27个逆变器电压矢量中选取最优作用矢量。本发明采用三相三电平逆变技术,降低了电力电子元器件所承受的最大电压,可应用于高压无功补偿装置。
文档编号H02J3/18GK102904261SQ20121035855
公开日2013年1月30日 申请日期2012年9月25日 优先权日2012年9月25日
发明者解大, 宋元锋, 王斯斯, 张延迟, 周长金, 庄俊鹏, 张玉涛, 王雷, 刘林泉, 何伟, 荆延飞 申请人:山东锦华电力设备有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1