电源开关装置的分段式温度补偿的制作方法

文档序号:13968691阅读:159来源:国知局

本发明大体涉及控制电源开关晶体管的开关瞬态,并且更具体地,涉及用于电动车辆中的一种类型的电源转换器的温度补偿栅极驱动信号。



背景技术:

诸如混合动力电动车辆(hev)、插电式混合动力电动车辆(phev)和电池电动车辆(bev)的电动车辆使用变频驱动电机以提供牵引扭矩。典型的电力驱动系统包括通过接触器开关连接到可变电压转换器(vvc)的dc(直流)电源(例如电池组或燃料电池),以调节主dc链路电容器两端的主总线电压。逆变器连接在用于dc链路的主总线和牵引马达之间,以便将dc电源转换为连接到马达绕阻的ac(交流)电源以推进车辆。

逆变器包括晶体管开关装置(例如绝缘栅双极晶体管,或igbt),该晶体管开关装置以包括多个相桥的桥配置连接。典型的配置包括由逆变器驱动的具有三相桥的三相马达。电子控制器打开和关闭开关,以便将dc电压从总线转换为施加到马达的ac电压。响应于包括电机的旋转位置和各相中的电流的各种感测条件来控制逆变器。

用于马达的逆变器可以优选地脉冲宽度调制dc链路电压,以便传输正弦电流输出的近似值,从而以期望的速度和扭矩来驱动马达。施加脉冲宽度调制(pwm)控制信号以驱动igbt的栅极,以便根据需要打开和关闭该栅极。在理想化的形式中,栅极驱动控制信号是在完全断开和完全导通(饱和)状态之间交替每个电源开关装置(例如,igbt)的方波信号。在关闭和打开期间,装置需要时间来响应栅极驱动信号的变化。例如,在栅极驱动信号从关闭状态转变为打开状态之后,通过装置输出的传导在几微秒内从零电流转变为最大电流。

诸如igbt的功率半导体晶体管装置的最佳开关速度是在高应力之间的折衷,高应力可能以非常快的开关速度破坏装置并且降低效率,并且在较慢的开关速度下增加功率损耗。用于装置的驱动电路可以配置为用遵循至优化的开关速度的轨迹的时变控制信号激励晶体管的栅极端子。然而,随着晶体管的温度变化,开关速度也响应于包括内部栅极电阻、阈值电压和跨导的晶体管的某些参数而变化。通常,随着温度的升高,开关速度降低,所以开关损耗增加;随着温度的降低,电压和电流应力增加,所以可靠性降低。为了避免增加的应力和降低的效率,补偿温度引起的参数变化变的很有必要。

用于选择最佳栅极控制信号轨迹或斜率(例如由栅极电阻或类似控制参数确定)的常规设计标准是在最低工作温度下发生的最坏情况下优化转换性能。因此,随着温度的升高,并且装置开关速度相应地降低,并且需要以趋向提高开关速度的方式调整控制参数。通常通过栅极驱动信号与温度增加成比例地增加提供给栅极的电流的幅度和/或斜率来增加开关速度。例如,可以通过使用用于栅极驱动器的可控电流源来直接改变栅极电流,或者可以通过增加栅极电压或降低栅极电阻间接地操纵栅极电流。参数已经被1)使用基于测量温度的闭环控制系统进行调整,以及2)例如通过结合连接到栅极的负温度系数(ntc)电阻来自动地进行调整。然而,已经发现,不是开关瞬态的所有方面都需要通过受控电流源的温度变化来调整。因此,除了现有技术中使用的栅极驱动信号的全面修改之外,甚至可以进行更好的优化。



技术实现要素:

本发明认识到,开关瞬态包括两个分开的部分:dv/dt部分和di/dt部分。如果栅极由恒流源驱动,则dv/dt部分几乎不随温度变化,因为结电容不是温度的强函数。由于阈值电压和跨导值的变化,di/dt部分随温度变化更强烈。现有技术不分别处理di/dt和dv/dt部分。因此,当调整不同温度下的栅极电源电压、栅极电流或栅极电阻时,改变di/dt或dv/dt之一可以调整为最佳,而di/dt或dv/dt中的另一个不能同时达到最佳。本发明分别控制di/dt和dv/dt部分,使得每个都可以被优化。

在本发明的一个方面,电源开关电路设置有绝缘栅电源开关装置。定时电路确定开关定时信号,该信号包括开关装置期望的开和关的转换时间。温度监控器量化装置温度。栅极驱动分布曲线生成器(gatedriveprofilegenerator)根据开关定时信号产生开关装置驱动信号并且具有dv/dt阶段和di/dt阶段。驱动信号在di/dt阶段期间具有响应于装置温度而调整的分布曲线,并且该驱动信号在dv/dt阶段期间具有不响应于装置温度而调整的分布曲线。分布曲线生成器优选地由受控电流源组成。

根据本发明,提供一种电源开关电路,包括:

绝缘栅电源开关装置;

定时电路,定时电路确定包括开关装置期望的开和关切换时间的开关定时信号;

量化装置温度的温度监控器;和

栅极驱动分布曲线生成器,栅极驱动分布曲线生成器产生根据开关定时信号并且具有dv/dt阶段和di/dt阶段的开关装置驱动信号,其中驱动信号在di/dt阶段期间具有响应于装置温度而调整的分布曲线,并且其中驱动信号在dv/dt阶段期间具有不响应于装置温度而调整的分布曲线。

在本发明的一个实施例中,栅极驱动分布曲线生成器是受控电流源。

在本发明的一个实施例中,驱动信号是经修改的方波,其中在di/dt阶段期间的分布曲线配置为通过开关装置保持预定瞬态电流。

在本发明的一个实施例中,预定瞬态电流具有恒定的斜率。

在本发明的一个实施例中,在di/dt阶段期间的分布曲线由提供给开关装置的栅极的变化的电流组成。

在本发明的一个实施例中,通过调整驱动信号的电压来控制变化的电流。

在本发明的一个实施例中,当开关装置导通时,在di/dt阶段期间的栅极驱动信号的电压vge符合以下公式:

其中vth是在装置温度下开关装置的阈值电压,a是限定预定瞬态电流的时间函数的常数,以及k是在装置温度下开关装置的跨导。

在本发明的一个实施例中,当断开开关装置时,在di/dt阶段期间的栅极驱动信号的电压vge符合以下公式:

其中vth是在装置温度下开关装置的阈值电压,iss是标称的导通电流,a是限定预定瞬态电流的时间函数的常数,以及k是在装置温度下开关装置的跨导。

在本发明的一个实施例中,开关装置连接在逆变器桥中,并且其中开关定时信号由脉冲宽度调制(pwm)控制信号组成。

在本发明的一个实施例中,驱动信号是经修改的方波,其中在dv/dt阶段期间的分布曲线配置为在开关装置两端保持预定瞬态电压。

在本发明的一个实施例中,预定瞬态电压符合以下公式:

其中vcg是结电压,ig是栅极电流,以及ccg是集电极栅极结电容。

附图说明

图1是示出了根据本发明的一个实施例的电动车辆的动力传动系统的示意框图;

图2a、2b和2c是与导通晶体管装置有关的波形图;

图3a、3b和3c是与断开晶体管装置有关的波形图;

图4a和4b分别是示出了晶体管装置的断开和导通性能的温度变化的波形图;

图5是示出了晶体管和驱动电路的电路图;

图6是示出了具有自补偿ntc栅极电阻的现有技术的晶体管装置的示图;

图7是示出了导通晶体管装置期间的开关瞬态的dv/dt和di/dt阶段的图;

图8是示出了断开晶体管装置期间的开关瞬态的dv/dt和di/dt阶段的图;

图9是示出了本发明的栅极驱动器的一个实施例的框图;

图10是示出了在di/dt阶段期间导通的晶体管的瞬态输出电流的一个优选示例的图;

图11是示出了在di/dt阶段期间断开的晶体管的瞬态输出电流的一个优选示例的图;

图12是示出了在装置导通的di/dt阶段期间期望的集电极电流瞬态的恒定斜率的代表性示例的图;

图13是示出了计算的电压vge的变化以获得图12的期望的电流瞬态的图;

图14是示出了计算的栅极电流ig的变化以获得图12的期望的电流瞬态的图;

图15是示出了计算的栅极电源电压vg的变化以获得图12的期望的电流瞬态的图;

图16是示出了在装置断开的di/dt阶段期间期望的集电极电流瞬态的恒定斜率的代表性示例的图;

图17是示出了计算的电压vge的变化以获得图16的期望的电流瞬态的图;

图18是示出了计算的栅极电流ig的变化以获得图16的期望的电流瞬态的图;

图19是示出了计算的栅极电源电压vg的变化以获得图16的期望的电流瞬态的图;

图20是示出了在装置导通的dv/dt和di/dt阶段期间经修改的栅极驱动分布曲线的波形图;

图21是示出了在装置断开的dv/dt和di/dt阶段期间经修改的栅极驱动分布曲线的波形图。

具体实施方式

图1示出了作为实现本发明的pwm变化的一种类型的车辆的混合动力电动车辆10。车轮11可以通过变速器14由内燃机12和/或由牵引马达13驱动。为了提供电力推进,马达13可以通过逆变器开关桥15来驱动,逆变器开关桥15在dc链路电容器16处接收dc链路电压。dc链路电压可以是由本领域已知的由转换器18转换来自电池组17的dc电力产生的。

逆变器15包括连接到马达相绕阻23、24和25的相桥20、21和22。相桥20具有上部开关装置26和下部开关装置27,该上部开关装置26和下部开关装置27串联连接在dc链路16两端并且在装置26和27之间提供连接到马达13的绕阻23的结点28。类似地,相桥21具有上部开关装置30和下部开关装置31,而相桥22具有上部开关装置32和下部开关装置33。结点34和35分别连接到马达绕阻24和25。

开关装置可以由igbt、反并联二极管、宽带隙场效应晶体管(fieldeffecttransistor,fet)或其他装置组成。上部和下部开关装置中的每一个具有连接到控制器38中的驱动器37的各自的栅极端子。连接到相桥的每个结点的电流传感器40测量通过每个相绕阻的电流。测量的电流强度从传感器40提供到控制器38中的逻辑电路41,以用于确定pwm开关信号将由驱动器37施加到开关装置。如本领域已知的,可以将所测量的电流与根据可以从操作者输入(诸如加速器踏板)得到的扭矩需求42确定的期望的马达电流进行比较,使得操作者可以控制车辆速度。因此,电流反馈确定逻辑电路41内的pwm占空比,然后用于产生相桥开关装置的pwm开关信号的定时。

pwm开关信号的定时可以表示为在每个各自的开关装置的断开电压和导通电压之间交替的方波电压。逻辑电路41和/或驱动器37进一步调节开关信号以增加死区时间间隔、校正所用装置的信号以及其他原因。

图2a示出了开关信号45,开关信号45具有从断开状态到限定导通时间的导通状态的转变46。图2b示出了输出电压波形47,其中当装置开始导通时,开关装置的输出端两端的输出电压波形vce在沿着瞬态48的导通时间之后开始立刻下降。图2c示出了输出电流波形50,其中开关装置的输出电流ic在沿着瞬态51的导通时间之后开始立刻上升。可能在短暂的过冲52之后,输出电流ic稳定在导通电流53的稳定状态。

类似地,图3a示出了开关信号54,开关信号54具有从导通状态到限定断开时间的断开状态的转变55。图3b示出了输出电压波形56,其中当装置准备断开时,开关装置的输出端两端的输出电压波形vce在沿着瞬态57的断开时间之后开始立刻上升。可能在短暂的过冲之后,输出电压vce稳定在电压58的稳定状态。图3c示出了输出电流波形59,其中开关装置的输出电流ic在沿着瞬态60的断开时间之后开始立刻下降。输出电流ic稳定在断开电流61的稳定状态。

图4a示出了在不同温度下在装置的断开期间绝缘栅晶体管的输出电压vce和输出电流ic的开关瞬态。电压迹线62对应于在25℃的温度下获得的开关时间。在125℃的温度下获得的电压迹线63显示出较慢的开关时间。关于装置输出电流,对应于25℃的温度的迹线64表明比对应于125℃的温度的迹线65更快的瞬态。图4b示出了在不同温度下装置导通开关的瞬态。迹线66和68分别在25℃的温度下示出了输出电压和输出电流瞬态。迹线67和69分别在125℃的温度下示出了输出电压和输出电流瞬态,其中具有产生的不希望的开关时间的增加。

在较高温度下降低开关时间的一种常规方式是使用如图5中所示的晶体管和驱动器。具有整体反向二极管的绝缘栅双极晶体管70具有连接到驱动器72的栅极端子71。温度传感器73量化晶体管70的温度,并且向驱动器72提供测量的温度信号。驱动信号(例如,驱动电流或驱动电压)根据预定关系进行调整,以便保持大致相同的开关速度。驱动信号的调整包括驱动信号幅度的变化,其在整个导通或断开序列期间同样适用,并且不分别处理di/dt和dv/dt。

图6中示出了温度补偿的另一常规方法(也未考虑dv/dt和di/dt阶段之间的差异),其中半导体模75承载绝缘栅晶体管76和ntc栅极热敏电阻77。随着模75的温度上升,ntc热敏电阻的电阻降低。电阻的降低增加了栅极电流的大小,使得晶体管76的开关速度保持接近期望的速度。

现有技术的栅极电流升高(无论直接修改还是通过增加栅极电压或降低栅极电阻间接控制)在开关瞬态期间连续地起作用。图7示出了在导通期间的输出开关瞬态可以分解成单独的阶段。输出电压迹线80和输出电流迹线81以不同的幅度尺度示出,但是在时间上对准。pwm开关定时信号在时间t1处转变为导通值。开关装置的栅极结构开始充电,并且在达到阈值电压之后,然后从t2开始,开始建立输出电流。从t2到t3的时间由变化的电流表征,这里被指定为di/dt阶段。开关瞬态的剩余部分由此处指定为dv/dt阶段的变化的电压确定。

图8示出了在断开期间的输出开关瞬态也可分解成单独的阶段。输出电压迹线82和输出电流迹线83以不同的幅度尺度示出,但是在时间上对准。pwm开关定时信号在时间t1处转变为断开值。栅极开始放电,并且当装置准备断开时,装置两端的电压开始增加。在时间t2处,装置输出电流开始下降。从t2到t3的时间由变化的电流表征,再次被指定为di/dt阶段。开关瞬态的剩余部分由再次被指定为dv/dt阶段的变化的电压确定。

结电压vcg的dv/dt部分可以由以下等式确定:

其中只要ig(栅极电流)不随温度变化(例如,使用恒定电流源),则dv/dt也不随温度变化(因为集电极栅极结电容ccg不是温度的强函数)。上述并不意味着ig必然是恒定的。ig可以是任何所需的形状,但是无论是什么温度该形状保持相同。

di/dt部分由以下等式确定:

阈值电压vth和跨导k都随温度而变化。它们的瞬时值可以基于测量的温度来估算。假设ic(或di/dt)被选择为具有最佳形状。然后,可以在每个温度下用以下等式计算vge(和dvge/dt):

其中vge是栅极电容两端的栅极电压。此外,栅极电源电压(vg)或栅极电流(ig)可以如下获得:

vg=vge+rgig

如上所述,瞬态波形仅在di/dt阶段期间受到温度变化的显著影响。通过仅在di/dt阶段期间根据温度修改栅极驱动分布曲线,可以获得更准确的补偿,其结果是可以更好地优化开关速度,同时降低装置应力并且提高效率。

图9示出了根据一个优选实施例的栅极驱动分布曲线生成器85,其中根据上述各个阶段以优化温度补偿的方式将pwm开关定时信号转变为开关装置驱动信号。因此,pwm定时信号被提供给栅极驱动调节框86,用于处理诸如死区时间插入的常规功能。来自框86的经调节的栅极驱动信号被提供给固定修改器87,固定修改器87提供与温度无关的恒定补偿分布曲线,以便在dv/dt阶段期间获得最佳的瞬态。具有固定修改的栅极驱动信号被提供给加法器88的一个输入端。

来自框86的经调节的栅极驱动信号还被提供给也接收装置温度信号的可变修改器89。基于量化的温度,可变修改器89确定在di/dt阶段期间对驱动信号的分布曲线的适当调整,以便获得一致的输出电流瞬态,而不管装置温度如何。可变修改器89可以例如由查找表和数字模拟转换器组成,以便在di/dt阶段期间在适当时间处向加法器88的各自的输入引入适当的修改。优选地,固定修改器87修改在dv/dt阶段期间的原始方波信号,并且可变修改器89修改在di/dt阶段期间的原始方波信号。例如,加法器88的输出端连接到相应晶体管的栅极端子,用于间接控制栅极电流。在优选实施例中,如图10和11中分别示出的,在di/dt阶段期间的瞬态电流可以优选地具有在每个导通和断开瞬态期间的恒定时间段的恒定斜率。也可以使用除直线以外的轨迹。在任何情况下,每个电流轨迹都具有为零的最小值和为iss的最大值(对应于装置的稳态电流)。

图12至15中示出了在装置导通期间的第一示例。如图12中所示的在di/dt阶段期间的恒定斜率为斜率大小a。通过开关装置的电流根据公式确定:

ic=k(vge-vth)2

在导通期间,vge可以使用以下公式确定:

并且在断开期间使用以下公式确定:

其中iss是稳态电流,a是线性电流的斜率,t是时间,k是跨导,以及vth是阈值电压。在各种温度下使用k和vth值的vge、ig和vg的计算值分别如图13至15中所示。图16中示出了用于断开的期望的斜率-a,以及在各种温度下使用k和vth值的vge、ig和vg的计算值分别如图17至19中所示。

图20中示出了在装置导通期间的栅极电压vg的完整分布曲线90,其中响应于在di/dt阶段91期间的温度来调整驱动信号。换句话说,基于pwm定时信号的方波信号在di/dt阶段91期间使用与所测量的温度相匹配的所示分布曲线调整之一而调整。在dv/dt阶段93期间,基于pwm定时信号的方波信号不根据温度而调整,尽管可以使用某些其他调整以便获得期望的开关速度(无论温度如何,任何这样的调整将因此适用)。在阶段92和93期间的虚线表示可以进行任何其他固定的修改。

图21中示出了在装置断开期间的栅极电压vg的完整分布曲线95,其中响应于在di/dt阶段96期间的温度来调整驱动信号。换句话说,基于pwm定时信号的方波信号在di/dt阶段96期间使用与所测量的温度相匹配的所示分布曲线调整之一而调整。在dv/dt阶段97期间,基于pwm定时信号的方波信号不根据温度而调整,尽管可以使用某些其他调整以便获得期望的开关速度(无论温度如何,任何这样的调整将因此适用)。在阶段97期间的虚线表示可以进行任何其他固定的修改。

在本发明的方法中,通过建立方波栅极驱动信号可以控制功率晶体管中的瞬态开关电流。测量晶体管的温度。调整驱动信号的分布曲线以提供期望的瞬态开关电流,其中在di/dt阶段期间响应于装置温度而调整开关电流的分布曲线,并且在dv/dt阶段期间不响应于装置温度而调整。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1