一种氢光互补微网系统及其控制方法与流程

文档序号:22620419发布日期:2020-10-23 19:25阅读:177来源:国知局
一种氢光互补微网系统及其控制方法与流程

本发明涉及供电系统技术领域,特别涉及一种氢光互补微网系统及其控制方法。



背景技术:

随着煤炭、石油等传统能源对全球环境造成的危害日显突出,且逐渐减少,为了人类长远的可持续发展,世界各国纷纷都把目光投向可再生绿色能源的开发和利用。太阳能以其独有的无污染、免运输、零成本、取之不尽、用之不竭的优势成为人类利用的重点,越来越多的国家已经实行了“阳光计划”,开发利用太阳能资源进行发电发热,近年来在这个领域取得相当辉煌的成就。

同时,为缓解能源危机及其造成的环境危害,各国政府的大力推动新能源汽车,其中的电动汽车发展相对迅速,也是各国重点项目工程。截至2019年底,全国纯电动汽车保有量达310万辆。截至2019年11月,全国公共充电桩和私人充电桩总计保有量为117.4万台,换电站保有量总计306座,两者比例严重失衡。2019年8月31日,由中国汽车技术研究中心有限公司、日产(中国)投资有限公司、社会科学文献出版社共同编著的《新能源蓝皮书:中国新能源汽车产业发展报告(2019)》在中国汽车产业发展(泰达)国际论坛期间正式发布,报告指出025年前后,电动车对传统燃油车的替代出现一个拐点。有关方面预计,2030年我国电动汽车产销量将超过1500万辆,再加上不同级别自动驾驶的基本普及,届时电动汽车保有量达8000万辆。这个预测如果实现的话,将涉及调整能源结构、建设智能电网、升级交通基础设施、支持新一代移动通信、改造调整产业链、转移就业岗位以及调整法律法规等,是一场波澜壮阔的工业革命。届时,如果还不能解决充电设施建设面临的老大难问题:物业获取难,电力扩容难,分布不合理,利用率极低,将会进一步加剧比例失衡。

在用电高峰期期间,许多大城市或者工业城市因为用电紧张,不得不进行错峰用电,以保证电网的安全稳定运行。未来,在极端情况下,500万辆电动汽车同时进行充电时,按20千瓦/辆,那么峰值充电功率可达1亿千瓦,预计将会占到2030年我国装机总容量的5%左右,因而未来电动汽车将有可能成为数量最多的电网负荷之一。由于受到大规模电动汽车的充电影响,将会导致“峰上加峰”的情况发生,造成电网调峰难度的进一步增加以及配电网建设压力的不断加大,此外,还会导致发电机组以及电网运行效率的大幅降低。

近年来,伴随电动汽车发展,太阳能车棚应运而生,将太阳能电池板组件组件和车棚顶结合在一起,比在车棚顶部再加装太阳能电池板组件组件节省了成本,不但能实现传统车棚的所有功能,还能发电给业主带来收益,且为清洁环保的新能源,有效缓解社会的环境和能源压力。然而太阳能也存在着一些短期内无法克服的缺点:

1、分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000w左右;若按全年日夜平均,则只有200w左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。

2、不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。

3、效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。

4、污染性:太阳能并网供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生不良的影响,如谐波污染、孤岛效应等。

然而,国家电网公司早于前几年向各级电力公司传达了《关于做好分布式电源项目抄表结算工作的通知》,要求分布式项目中的全额上网项目暂停结算补助资金,待财政部公布目录以后再行结算,不但给太阳能行业发展带来更大阻碍,更阻碍了电动汽车的发展。

充电设施的不完善、以热定电政策、分布式项目补助叫停,无疑加大了电动汽车行业的发展困境。



技术实现要素:

本发明提供一种氢光互补微网系统及其控制方法,解决太阳能供电系统等单一间歇性能源供电系统供电不稳定、间断性、低效率的问题。

为了解决上述技术问题,本发明的技术方案为:

一种氢光互补微网系统,包括:

太阳能电池板组件,用于将太阳能转换为电能,为储能电池提供电能;

dc/dc变换器,用于调节太阳能电池板组件的输出电压;

太阳能控制器,用于控制太阳能电池板组件对储能电池充电;

甲醇水氢燃料电池发电系统,用于当太阳能电池板组件供电不足时将甲醇水的化学能转换为电能,为储能电池提供电能;

储能电池,用于储存电能,并且为负载提供电能;

所述太阳能电池板组件与dc/dc变换器输入端连接,所述太阳能控制器与dc/dc变换器电性连接,所述dc/dc变换器输出端与储能电池电性连接,所述甲醇水氢燃料电池发电系统输出输出端与储能电池电性连接。

作为优选,氢光互补微网系统还包括:

dc/ac逆变器,用于将直流电转变为交流电,为交流负载提供电能;

谐振转换器,用于调节储能电池的输出电压,为直流负载提供电能;

所述储能电池分别与dc/ac逆变器输入端及谐振转换器输入端连接,所述太阳能控制器与dc/ac逆变器电性连接,所述dc/ac逆变器输出端与交流负载连接,所述谐振转换器输出端与直流负载连接。

作为优选,所述dc/ac逆变器输出为220v交流电或380v交流电。

作为优选,所述dc/ac逆变器为并网逆变器。

本发明还提出一种氢光互补微网系统控制方法,包括:

当无需为负载提供电能时,所述太阳能电池板组件产生的电能储存在储能电池中;

当需要为负载提供电能时,通过储能电池中储存的电能及太阳能电池板组件产生的电能为负载提供电能;

当储能电池及阳能电池板组件供电不足时,通过开启甲醇水氢燃料电池发电系统,同步负载提供电能,保证负载的正常供电;

太阳能电池板组件对储能电池充电时,通过dc/dc变换器调节太阳能电池板组件的输出电压。

作为优选,为负载提供电能时,通过dc/ac逆变器将直流电转变为交流电,为交流负载提供电能。

作为优选,通过dc/ac逆变器将直流电转变为220v交流电或380v交流电,用于日常用电或工业用电。

作为优选,为负载提供电能时,通过谐振转换器调节输出电压,为直流负载提供电能。

采用上述技术方案,具有以下有益效果:

1、适用于农村、社区、学校、商业广场、工厂、政府机构、旅游景区等场所,可为上述场所停放的电动汽车提供充电,同时也能解决农村用户用电问题,特别是边远地区的农村;

2、克服了单一的风能、太阳能等间歇性能源的不连续缺点;

3、具有更高的经济效益和社会效益。

附图说明

图1为本发明实施例的系统连接结构示意图。

图中,1、太阳能电池板组件,2、dc/dc变换器,3、太阳能控制器,4、甲醇水氢燃料电池发电系统,5、储能电池,6、dc/ac逆变器,7、谐振转换器,8、交流负载,9、直流负载。

具体实施方式

下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。

如图1所示,本发明提供的一种氢光互补微网系统,包括:

太阳能电池板组件1,用于将太阳能转换为电能,为储能电池5提供电能;

dc/dc变换器2,用于调节太阳能电池板组件1的输出电压;

太阳能控制器3,用于控制太阳能电池板组件1对储能电池5充电,并且对储能电池5的充放电条件加以设定和控制,按照负载的电源需求控制太阳能电池板组件1和储能电池5对负载的电能输出,即为系统的控制核心;

甲醇水氢燃料电池发电系统4,用于当太阳能电池板组件1供电不足时将甲醇水的化学能转换为电能,为储能电池5提供电能;

储能电池5,用于储存电能,并且为负载提供电能;

太阳能电池板组件1与dc/dc变换器2输入端连接,太阳能控制器3与dc/dc变换器2电性连接,dc/dc变换器2输出端与储能电池5电性连接,甲醇水氢燃料电池发电系统4输出输出端与储能电池5电性连接。

当用户不需要用电时,即没有外接负载时,太阳能电池板组件1产生的电能储存在储能电池5中;当用户需要用电时,即连接有外接负载时,利用与系统连接的充电桩或功率转化器,优先使用储能电池5及太阳能电池板组件1的电能。当储能电池5及太阳能电池板组件1供电不足时,开启甲醇水氢燃料电池发电系统4协同系统工作,满足用户需求。一切工作模式所使用的能源都是可再生能源,清洁低碳。

甲醇水氢燃料电池发电系统4可以采用固定式燃料电池发电系统或移动式燃料电池发电系统(燃料电池汽车和其他可移动的燃料电池发电系统),提高系统架设及改造的便捷性。

进一步的,氢光互补微网系统还包括:

dc/ac逆变器6,用于将直流电转变为交流电,为交流负载8提供电能;

谐振转换器7,用于调节储能电池5的输出电压,为直流负载9提供电能,;

储能电池5分别与dc/ac逆变器6输入端及谐振转换器7输入端连接,太阳能控制器3与dc/ac逆变器6电性连接,dc/ac逆变器6输出端与交流负载8连接,谐振转换器7输出端与直流负载9连接。

进一步的,dc/ac逆变器6输出为220v交流电或380v交流电。

进一步的,dc/ac逆变器6为并网逆变器,其中系统既可以是离网式,也通过并网逆变器可以向电网输出与电网电压同频、同相的正弦交流电流。

系统各部分均采用模块化设计,可单独使用或多个组合,便于扩展。如应用在电动汽车太阳能充电车棚时,可以根据车位的数量,调节系统的模块数量,灵活性更强,经济效益和社会效益更高。

如:采用5kw的太阳能电池板组件1、5kw的甲醇水氢燃料电池发电系统4,配置30kwh的储能电池5,即可满足每天4台车深度补电。按目前市场成本约25万一座,设计使用寿命15年。

每天4台车深度补电,4×30kwh=120kwh,按2rmb/kwh,可收益240元;一年240×365=87600元,3年即可收回投资。

以广州市为例:

投放10000个车棚建设,可以满足40000台电动车的错时分享充电;

120kwh×365×10000=438000000kwh,与相同发电量的火电厂相比,每年可节约标煤15万吨,每年可相应地减少燃煤所造成的温室气体排放,其中二氧化碳35吨,二氧化硫8.2万吨,烟尘1.3万吨。

具体的,通过太阳能控制器3、dc/dc变换器2,同时向dc/ac逆变器6、储能电池5提供直流电,并分别经过dc/ac逆变器6、谐振转换器7,同时向不同负载供电,当太阳能电池板组件1及储能电池5的电能无法满足供电时,通过开启甲醇水氢燃料电池发电系统4进行补充,具体应用场景包括但不限于:

家庭用电:经太阳能控制器3、dc/ac逆变器6,转换成稳定的220v交流电,满足家庭生活用电;

工业用电:经太阳能控制器3、dc/ac逆变器6,转换成稳定的380v交流电,满足生产用电;

电动车充电服务:经太阳能控制器3、谐振转换器7,转换成稳定的直流电,为电动汽车提供直流充电。

本发明还提出一种氢光互补微网系统控制方法,包括:

当无需为负载提供电能时,太阳能电池板组件1产生的电能储存在储能电池5中;

当需要为负载提供电能时,通过储能电池5中储存的电能及太阳能电池板组件1产生的电能为负载提供电能;

当储能电池5及阳能电池板组件供电不足时,通过开启甲醇水氢燃料电池发电系统4,同步负载提供电能,保证负载的正常供电;

太阳能电池板组件1对储能电池5充电时,通过dc/dc变换器2调节太阳能电池板组件1的输出电压。

进一步的,为负载提供电能时,通过dc/ac逆变器6将直流电转变为交流电,为交流负载8提供电能。

进一步的,通过dc/ac逆变器6将直流电转变为220v交流电或380v交流电,用于日常用电或工业用电。

进一步的,为负载提供电能时,通过谐振转换器7调节输出电压,为直流负载9提供电能。

以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1