二极管桥臂并联型的三电平整流充电器

文档序号:26145833发布日期:2021-08-03 14:31阅读:212来源:国知局
二极管桥臂并联型的三电平整流充电器

本发明涉及电力变换技术领域,具体涉及一种二极管桥臂并联型的三电平整流充电器。



背景技术:

传统的两电平整流器所承受的电压应力高、输入电流谐波大,因此多电平整流器应用将越来越广。相比较两电平的整流器,三电平整流器具有更多的电平数,因此其输入pwm波形更加接近正弦波;在开关频率相同时,三电平整流器具有更少的高次谐波,更低的开关损耗;三电平整流器具有开关损耗低和谐波含量低、并且电容承受电压仅为直流电压一半,能显著地降低开关管电压应力。



技术实现要素:

本发明提供一种二极管桥臂并联型的三电平整流充电器,设计有并联的开关管桥臂结构,具备可靠性较高,功率等级更高,输入电流高次谐波含量小,开关管电压应力低的优点。

本发明采取的技术方案为:

二极管桥臂并联型的三电平整流充电器,该整流器包括:

开关管s1、s2、sa1、sa2、sb1、sb2,二极管da1、da2、da3、da4、db1、db2、db3、db4,电感l1、l2,电容c1、c2;

交流电源ug一端分别连接开关管s1源极、开关管s2漏极;

交流电源ug另一端分别连接电感l1一端、电感l2一端;

电感l1另一端分别连接二极管da2阳极、二极管da3阴极;

电感l2另一端分别连接二极管db2阳极、二极管db3阴极;

二极管da2阴极分别连接二极管da1阳极、开关管sa1漏极;

二极管da3阳极分别连接二极管da4阴极、开关管sa2源极;

二极管db2阴极分别连接二极管db1阳极、开关管sb1漏极;

二极管db3阳极分别连接二极管db4阴极、开关管sb2源极;

开关管s1漏极分别连接二极管da1阴极、二极管db1阴极、电容c1正极;

开关管s2源极分别连接二极管da4阳极、二极管db4阳极、电容c2负极;

电容c1负极分别连接开关管sa1源极、开关管sa2漏极、开关管sb1源极、开关管sb2漏极、电容c2正极;

负载rl两端分别连接电容c1正极、电容c2负极。

所述电容c1、c2为串联分裂电容,串联分裂电容c1、c2组成直流母线,每个电容承受直流母线电压udc的一半,实现三电平中的±0.5udc电平。

所述开关管s1、s2、sa1、sa2、sb1、sb2为全控型功率器件绝缘栅型双极晶体管igbt、或者电力场效应管mosfet。

所述开关管s1、s2、sa1、sa2、sb1、sb2均反向并联了二极管。

本发明一种二极管桥臂并联型的三电平整流充电器,具有如下有益效果:

1)、本发明一种二极管桥臂并联型的三电平整流充电器,具有电感连接的并联二极管桥臂结构,本发明应用到两个双向开关管结构单元,两个双向开关分别由开关管sa1、sa2、二极管da1、da2、da3、da4和开关管sb1、sb2、二极管db1、db2、db3、db4组成,主要功能是实现±0.5udc电压流通路径。本发明拓扑具有双升压、整流、三电平功率因数校正的特点。

2)、本发明三电平整流充电器拓扑,具有电感连接的并联二极管桥臂结构,此串联二极管桥臂单元模块可用作三电平模块化的功率单元结构。

3)、本发明在单位功率因数校正拓扑中,并联了两个串联二极管桥臂组成的三电平结构,在整流器拓扑中具有两个升压电路单元,具有双升压特点。另外,拓扑结构中两个电感分别连接两个串联二极管桥臂,任何一个桥臂发生故障情况下,整流器仍能正常工作,提高了电路工作可靠性,并且能在较高功率等级场合下工作。

4)、本发明提出二极管和全控器件相融合的两个串联二极管桥臂三电平结构,该结构具有可靠性高、功率较大、工作时开关频率较高,这样相对于传统两电平结构减小了输入电流纹波。

5)、本发明三电平整流充电器拓扑,采用三电平结构,该结构具有较大的功率密度,较小的电压应力,一定程度上延长了开关管的使用寿命。

6)、本发明三电平整流充电器,在一个交流输入周期内存在六个工作模态,该拓扑结构六个模态中两个并联开关管钳位支路上开关管触发脉冲分配一致,一定程度上简化了控制难度。

附图说明

图1为本发明一种二极管桥臂并联型的三电平整流充电器主拓扑结构图。

图2为本发明一种二极管桥臂并联型的三电平整流充电器工作模式一图。

图3为本发明一种二极管桥臂并联型的三电平整流充电器工作模式二图。

图4为本发明一种二极管桥臂并联型的三电平整流充电器工作模式三图。

图5为本发明一种二极管桥臂并联型的三电平整流充电器工作模式四图。

图6为本发明一种二极管桥臂并联型的三电平整流充电器工作模式五图。

图7为本发明一种二极管桥臂并联型的三电平整流充电器工作模式六图。

图8(a)为本发明稳态交流输入电压ug、交流输入电流ig波形图。

图8(b)为本发明稳态输出电压uan、ubn波形图。

图8(c)为本发明稳态输出电压udc波形图。

图9(a)为本发明开关管开关脉冲电压ug1、ug2波形图。

图9(b)为本发明开关管开关脉冲电压uga1、uga2波形图。

图9(c)为本发明开关管开关脉冲电压ugb1、ugb2波形图。

图10为本发明电感l1、l2电流il1、il2波形图。

图11为本发明直流分裂电容c1、c2电压uc1、uc2波形图。

具体实施方式

如图1所示,一种二极管桥臂并联型的三电平整流充电器,该整流充电器左侧为一个开关管桥臂s1、s2,该整流充电器右侧为两个二极管串联桥臂和开关管钳位支路并联组成的三电平结构。

本发明整流充电器包括开关管sa1、sa2、二极管da1、da2、da3、da4和开关管sb1、sb2、二极管db1、db2、db3、db4,交流电源ug,电感l1、l2,电容c1、c2;

整流充电器左侧为开关管桥臂s1、s2,右侧为两个二极管串联桥臂da1、da2、da3、da4,开关管钳位支路sa1、sa2和二极管串联桥臂db1、db2、db3、db4和开关管钳位支路sb1、sb2并联组成的三电平电路。

串联分裂电容c1、c2组成直流母线,电容容值相等,每个电容承受直流母线电压udc的一半,形成母线电压一半的中点,实现±0.5udc电平。

两个双向开关分别由开关管两个双向开关分别由开关管sa1、sa2、二极管da1、da2、da3、da4和开关管sb1、sb2、二极管db1、db2、db3、db4组成,主要功能是实现±0.5udc电压流通路径。

交流电源ug右侧连接电感l1、l2;电感l1连接于二极管串联桥臂da1、da2、da3、da4上,交点为节点a;

电感l2连接于二极管串联桥臂db1、db2、db3、db4上,交点为节点b;

交流电源ug左侧与开关管桥臂s1、s2连接,交点为节点n;

开关管s1漏极、二极管da1阴极、二极管db1阴极以及电容c1正极连接,交点为节点p;

开关管s2源极、二极管da4阳极、db4阳极与电容c2负极连接于节点m;

开关管sa1、sb1源极,sa2、sb2漏极与分裂电容c1负极、c2正极连接,交点为节点n;

负载rl接在节点p和节点m之间。

电路具体参数如下:

整流充电器输入侧电压有效值为220v,频率为50hz,开关频率为20khz,直流侧输出电压udc=400v,电感l1=l2=3.3mh,直流侧电容c1=c2=4700μf,负载rl=50ω。

二极管桥臂并联型的三电平整流充电器,包括以下工作模式:

(1)工作模式一:如图2所示,电网电压ug>0v,电压uan=ubn=0v。a点所在二极管桥臂的二极管da1导通、da2导通;b点所在二极管桥臂的二极管db1导通、db2导通;左侧开关管桥臂开关管s1导通,其余半导体器件均关断。此时,电网电流ig分别通过电感l1、l2流过并联二极管桥臂的二极管da2、da1和二极管db2、db1,后通过开关管s1形成通路。同时,电容c1、c2放电对负载rl供电。交流电源ug对电感l1、l2充电,电感l1、l2储能,其电流il1、il1线性增加。

(2)工作模式二:如图3所示,电网电压ug>0v,电压uan=ubn=udc/2。a点所在二极管桥臂的二极管da2导通,开关管钳位支路上开关管sa1导通;b点所在二极管桥臂的二极管db2导通,开关管钳位支路上开关管sb1导通;左侧开关管桥臂开关管s2体二极管导通,其余半导体器件均关断。电网电流ig经过电感l1、l2,分别流经二极管da2、开关管sa1和二极管db2、开关管sb1并联支路,再通过电容c2、开关管s2体二极管形成通路;此时,电感l1、l2放电对电容c2充电,电容c1对负载rl供电。当电网电压ug>udc/2时,电感l1、l2充电,其电流il1、il2增大;当电网电压ug<udc/2时,电感l1、l2放电,其电流il1、il2减小。

(3)工作模式三:如图4所示,电网电压ug>0v,电压uan=ubn=udc。a点所在二极管桥臂的二极管da1导通、da2导通;b点所在二极管桥臂的二极管db1导通、db2导通;左侧开关管桥臂开关管s2体二极管导通,其余半导体器件均关断。电网电流ig分别通过电感l1、l2,分别流过并联二极管桥臂的二极管da2、da1和二极管db2、db1,再通过电容c1、c2、开关管s2体二极管形成通路。此时,电源对电容c1、c2充电,并向负载rl供电;电感l1、l2放电,其电流il1、il2减小。

(4)工作模式四:如图5所示,电网电压ug<0v,电压uan=ubn=0v。a点所在二极管桥臂的二极管da3导通、da4导通;b点所在二极管桥臂的二极管db3导通、db4导通;左侧开关管桥臂开关管s2导通,其余半导体器件均关断。电网电流ig经开关管s2后分别通过并联支路二极管da4、da3、电感l1和二极管db4、db3、电感l2形成通路。此时,电容c1、c2放电对负载rl供电。交流电源ug对电感l1、l2充电,电感l1、l2储能,其电流il1、il1线性增加。

(5)工作模式五:如图6所示,电网电压ug<0v,电压uan=ubn=-udc/2。a点所在二极管桥臂的二极管da3导通,开关管钳位支路上开关管sa2导通;b点所在二极管桥臂的二极管db3导通,开关管钳位支路上开关管sb2导通;左侧开关管桥臂开关管s1体二极管导通,其余半导体器件均关断。电网电流ig经过开关管s1体二极管、电容c1后分别流经开关管sa2、二极管da3、电感l1和开关管sb2、二极管db3、电感l2并联支路,形成通路;此时,电感l1、l2放电对电容c1充电,电容c2对负载rl供电。当电网电压幅值︱ug︱>udc/2时,电感l1、l2充电,其电流il1、il2增大;当电网电压幅值︱ug︱<udc/2时,电感l1、l2放电,其电流il1、il2减小。

(6)工作模式六:如图7所示,电网电压ug<0,uan=ubn=-udc。a点所在二极管桥臂的二极管da3导通、da4导通;b点所在二极管桥臂的二极管db3导通、db4导通,二极管d1导通;左侧开关管桥臂开关管s1体二极管导通,其余半导体器件均关断。电网电流ig经过开关管s1体二极管、电容c1、c2后分别流经二极管da4、da3、电感l1和二极管db4、db3、电感l2并联支路,形成通路。此时,电源对电容c1、c2充电,并向负载rl供电;电感l1、l2放电,其电流il1、il2减小。

图8(a)为交流侧电压电流波形,表示本发明交流输入电压ug和交流输入电流ig波形均保持正弦化,且电流ig波形与电压ug波形基本同相位,达到功率因数校正目的。

图8(b)为本发明稳态输出电压uan、ubn图,表示本发明拓扑能实现三电平整流,uan、ubn波形保持一致,符合并联的特性。

图8(c)表示本发明稳态输出电压udc波形,表示本发明能实现升压,且输出直流电压在400v附近波动很小。

图9(a)、图9(b)、图9(c)分别为本发明开关管开关脉冲电压信号。

图9(a)为开关管开关脉冲电压ug1、ug2一个周期的波形图,表示出一个周期内左侧桥臂上开关管s1、s2的开关脉冲分配信号。

图9(b)为开关管开关脉冲电压uga1、uga2波形图,表示一个周期内右侧桥臂钳位开关管sa1、sa2的开关脉冲分配信号。

图9(c)为开关管开关脉冲电压ugb1、ugb2波形图,表示一个周期内右侧桥臂上钳位开关管sb1、sb2的开关脉冲分配信号,与图9(b)桥臂上钳位开关管开关脉冲分配信号完全相同。

图10为本发明两电感l1、l2电流il1、il2波形图,表示电流il1、il2波形相同,每个正弦波均为ig的一半。

图11为本发明直流分裂电容c1、c2电压uc1、uc2波形图,表示本发明直流侧分裂电容电压均能维持在200v附近,电容电压平衡。

综上对实验结果的分析可知,本发明拓扑能实现功率因数校正,且直流电压输出稳定,具有良好的稳态性能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1