两级跟踪可移动光伏发电系统的制作方法_4

文档序号:8433341阅读:来源:国知局
动光伏发电系统3需要上机耕路时,电动驱动装置29将田轨约束板28拉起至图6虚线位置,使田轨约束板28不影响可移动光伏发电系统3在机耕路上行驶。
[0089]图8和图9共同给出本发明第七个实施例。
[0090]图8和图9中,农地I的过渡垫块16上设置水泥平行双田轨2。水泥平行双田轨2的顶部是一个可以运行轮组26的承重田轨平面,在平行双田轨2的一个侧面还具有一个负荷承重界面30 ;在平行双田轨2的下半部含有一个管孔34。负荷承重界面30也可以设计成可以运行滚轮或者轮组。管孔34用于排涝时,地里的积水可以通过拼接处19流入管孔34并顺着管孔34流出农地I。图8和图9中,省略了水泥桩柱的描述。
[0091]图8和图9中,水泥平行双田轨2具有工字钢的力学特性省料并且适合用作横梁,其高度也比较高。
[0092]图8和图9中,在底盘5上还设置有加强螺钉31和自动旋钉器32。自动旋钉器32通过接口电路与控制计算机信号连接,可以将加强螺钉31随时旋入农地I中使可移动光伏发电系统的状态得到加固有利于抗风。
[0093]图8和图9中,在底盘5上还设置有钩板33,钩板33与一个电动驱动装置29传动连接。电动驱动装置29通过接口电路与控制计算机信号连接,可以将钩板33的顶部够状物推进平行双田轨2的凹槽内并使得可移动光伏发电系统与平行双田轨2结合为一体有利于抗风。
[0094]图10和图11共同给出本发明第八个实施例。
[0095]图10和图11中,农地I中的过渡垫块16上设置钢管网架平行双田轨2。钢管网架平行双田轨2包括两根平行双布置的上钢管36和下钢管37以及连接上钢管36和下钢管37的桁架38。平行双田轨2用预埋螺栓39固定于水泥桩柱17上和树桩40。上钢管36可以运行轮组26。由于上钢管36的表面为圆形,轮组26的外表面为一个与管状表面吻合的凹面。轮组26可以只由一个轮子组成。下钢管37也留出一个负荷承重界面30。负荷承重界面30也可以设计成可以运行滚轮或者轮组。在上钢管36中埋置有电力线41。上钢管36和下钢管37可以选用直径范围为20毫米至360毫米的镀铝钢管。
[0096]钢管网架平行双田轨2抗冲击性能强。它适用于建设在山里的竹林这种不需要大面积耕作,而只是将竹子或者竹子加工成的半成品运下山来的用途。在现场安装时可以接成20米以上用于横跨山涧。使用树桩安装平行双田轨时,可以对树桩进行防腐处理。
[0097]图12和图13共同给出本发明第九个实施例。
[0098]图12和图13中,两根带枕砼42的工字型钢轨43用连接杆44连接组成平行双田轨2,直接设置在农地I中。轮组26的轮子带轮缘以确保不滑出平行双田轨2。采用工字型钢轨43的平行双田轨2抗冲击性能强,并可以轻易吊起。
[0099]某些情况下包括牧场,还可以不采用田轨2,但仍然需要旁站电力线,直接在农地即牧场上行驶可移动光伏发电系统3。
[0100]图14、图15和图16共同给出本发明的第十个实施例。
[0101]图14至16中,设置于农田I中的三电动推杆两级跟踪可移动光伏发电系统3包括计算机控制系统、通过接口电路与计算机控制系统电气连接的逆变器45、下主电动推杆46、下副电动推杆47、上主电动推杆48、上副电动推杆49、轮组驱动机构和通讯模块,以及底盘5、轮组26、主网架板50和光伏电池板9。可移动光伏发电系统3通过轮组26和平行双田轨2向农地I传导重力。各组底轮26各带驱动和方向调节装置。在平行双田轨2上还有若干根电杆23架起电力线钢管24。
[0102]单轴一维跟踪和双轴两维跟踪可以分别增加光伏电池板的输出约10%和30%。本发明除了采用现有的各种单轴及双轴跟踪机构外,还设计出采用三电动推杆的两维太阳光跟踪装置。电动推杆是一种常用的电动元器件,包括固定杆和活动杆;其活动杆的端部和固定杆的底部带有连接界面包括球面副连接界面。电动推杆的活动杆的端部可以沿本身轴心线作前进后退运动并改变与其连接的负荷的空间状态。
[0103]图14和图16中的底盘5、下主电动推杆46、主网架板50和下副电动推杆47组成一个如下虚线方框51以及虚线四边形框52所示的四边形。令下主电动推杆46与底盘5刚性连接,并令主网架板50通过球面副机构连接下主电动推杆46和下副电动推杆47,再令下副电动推杆47与底盘5之间也通过球面副机构连接。这样既可以克服四边形结构不稳定的特性,又可以使主网架板50翻动自如。令下主电动推杆46承受较多的负荷重量可以减轻上述有关球面副结构的负荷降低重量与造价。
[0104]同样,图14中的上主电动推杆48、光伏电池板9、上副电动推杆49和主网架板50组成一个如上虚线方框53所示的四边形。令上主电动推杆48与主网架板50刚性连接,并令光伏电池板9通过球面副机构连接上主电动推杆48和上副电动推杆49,再令上副电动推杆49与主网架板50之间也通过球面副机构连接。这样既可以克服四边形结构不稳定的特性,又可以使光伏电池板9翻动自如。令上主电动推杆48承受较多的负荷重量可以减轻上述有关球面副结构的负荷降低重量与造价。
[0105]从图16中可以看出:如果将所有光伏电池板9布置于一个平面,可以节省9块光伏电池板9的总共27个电动推杆并且个光伏电池板9之间可以不留出大量的间隙,但在两侧距离为5米的光伏电池板9仅仅一维跟踪处于45°状态如斜双虚线时,其高边就要高出低边3.535米。加上低边的高度I米,高边离地面有4.5米开外;两维跟踪还要增加约I米高度达到5.5相当于层高2.7米的两层楼高。而采用如图14和图16所示采用两级两维跟踪即主网架板50的太阳光跟踪和各光伏电池板9的太阳光跟踪,这样即使作两维跟踪,所涉及的离地面的极限高度也可以同比低于3.5米。此外,集成9块光伏电池板9的整体基板的总体制造成本可能高出本发明实施例10的两级跟踪的,其对风力也更为敏感。
[0106]采用三个电动推杆就可以实现对光伏电池板的两维朝向控制。图15中在光伏电池板9的背面安排三个点,其中一个点主电动推杆球面副结构连接点54位于十字中心线的长线上略偏离中心点下方处;余下两个点副电动推杆球面副结构连接点55位于十字中心线中心点上方长线两旁处。
[0107]从后面的图17可以看出:采用电动丝杆机构制作下主电动推杆46和下副电动推杆47具有行程长的优点。
[0108]下主电动推杆46和下副电动推杆47在其丝杆螺母上下降到最低点时,可令其上端穿过光伏电池板之间的间隙,以最大限度降低光伏电池板。在有大风时,光伏电池板越低风阻越小。
[0109]电动丝杆机构包括一个丝杆机构和一个电动蜗轮蜗杆机构。
[0110]电动丝杆包括丝杆和与丝杆配合的丝杆螺母;电动蜗轮蜗杆机构包括一个电动蜗杆和一个与电动蜗杆啮合的涡轮;涡轮与丝杆螺母一体制作并可采用转动副机构与基础或者负荷连接。电动蜗杆依靠与其传动连接的驱动装置驱动;所述驱动装置包括电动机和减速器。电动蜗杆转动带动丝杆螺母涡轮和负荷作相当于基础的上下运动。
[0111]用于太阳光跟踪控制的电动丝杆机构需要配置转角记忆装置以便实施精密控制。通常转角记忆装置包括一个与电动机同心连接的圆盘,所述圆盘上均布36个通孔。在所述通孔的两端分别设置一个光源和一个光信号传感器。当圆盘转动时,每一次通孔让光源的光线直接照射到光信号传感器,都会使转角记忆装置作一次计数。累计所有电动机转角数可以知道各光伏电池板的跟踪状态,再加上所述可移动光伏发电系统所处平行双田轨的状态包括其方位、计算机时钟、现场的太阳高度角和照射角的实时计算和太阳光状态传感器提供的信息,就可以形成当时对所述跟踪装置的控制信号。以所述电动推杆的丝杆螺母螺距10毫米、所述蜗轮的牙数为25个,减速器的速比37,则电动机每旋转100转,对应的丝杆螺母在丝杆上的位移约为1.081 (10/25/37*100)毫米。
[0112]还可以采用三根以上电动推杆驱动,这时要防止相关跟踪机构形成力学理论中所述的超静定结构现象。
[0113]实施例10的工作原理可简述如下:白天,计算机控制系统根据程序和通过通讯模块得到的天气预报,发出指令令光伏电池板9保持原状、或者进入并处于防风状态、或者持续跟踪太阳光。可移动光伏发电系统3受光产电达到一定强度时通过逆变器将直流电换流成交流电并通过电力线钢管24中的电力线向外输出电能。同时,根据农地中的农作物56的情况采用不同的速度在平行双田轨2上行走,做到发电和农地中的农作物56正常生长两不误。实施例10底盘5中间挑高和电力线钢管24保持较低位置也是出于照顾农作物56生长的考虑。
[0114]图17给出本发明第i^一个实施例。
[0115]图17中,电动推杆包括一个机壳57、推杆58、电动驱动装置59、丝杆60和丝杆螺母61。机壳57、推杆58、电动驱动装置59、丝杆60和丝杆螺母61同心布置。电动驱动装置59包括电动机和减速器。电动驱动装置59固定于机壳57底部。丝杆螺母61与丝杆60配合并与推杆58连接。随着电动机的正转和反转,推杆可以在一定范围内前进和后退。
[0116]图18给出本发明第十二个实施例。
[0117]图18中,电动丝杆升降机构包括一个升降丝杆机构和一个电动蜗轮蜗杆机构;升降丝杆机构包括一根升降丝杆60和一个与升降丝杆60配合的丝杆螺母61 ;电动蜗轮蜗杆机构包括一根电动蜗杆62和一个与电动蜗杆哨合并与丝杆螺母61 —体制作的蜗轮;电动蜗杆62带有一个电
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1