一种适用于单逆变器驱动多台异步电机的控制算法

文档序号:9526546阅读:603来源:国知局
一种适用于单逆变器驱动多台异步电机的控制算法
【技术领域】
[0001] 本发明是一种适用于单逆变器驱动多台异步电机的控制算法,是一种基于动态模 型结构的单逆变器驱动多电机控制策略的研究。
【背景技术】
[0002] 交流变频调速技术已经日趋成熟,在进一步的发展和研究中,其调速性能基本上 可以与直流调速相媲美,从而使得交流调速成为了目前主流的调速系统。随着电力电子技 术的迅猛发展,高集成化、快速处理能力以及多线程处理技术都得到了很好的发展,进而推 动了电气传动技术领域的发展。为应对实际调速系统需求,进一步发挥交流调速系统的优 势,交流调速系统从以往的单逆变器驱动单台交流电机系统慢慢延伸到了目前的单逆变器 驱动多台电机系统,这不仅节约了成本、缩小了安装使用空间,而且也简化了调速系统。

【发明内容】

[0003] 针对现有技术存在的不足,本发明目的是提供一种适用于单逆变器驱动多台异步 电机的控制算法,以解决上述【背景技术】中提出的问题,本发明使用方便,便于操作,稳定性 好,可靠性高。
[0004] 为了实现上述目的,本发明是通过如下的技术方案来实现:一种适用于单逆变器 驱动多台异步电机的控制算法,包括以下步骤:
[0005] 1)建立控制系统,控制系统包括主电路、检测电路和控制电路,主电路是逆变电路 和电机负载;检测回路主要是对电压、电流以及转速信号进行检测;作为一个闭环系统,控 制部分电路是将检测的反馈信号由于与实际给定作比较,从而进行实际的调节,达到控制 主回路的目的;
[0006] 2)主回路中的选择,逆变电路开关器件选择的是M0SFET,电机负载选择的是异步 直流电机,这样可以方便模拟能量回馈制动工作状况;
[0007] 3)控制电路的选择,控制电路是基于直接转矩控制的理论思想,直接转矩控制与 矢量控制方式相比,在动态模型上相对而言要简便,控制算法上,采用倍比分权的加权控制 策略,这样保证了所有异步直流电机不会出现给定不够以至于产生颠覆现象,在实际的计 算中,由于每台异步电机的工况不尽相同,这样输入电机的变量与电机的输出变量便会存 在一定的差异,根据实际的需求不同,对多台异步直流电机的同一变量需作权重衡量,与平 均理论推导过程类似,平均理论知识加权理论的一种特殊情况,即平均理论中η台电机的 同一变量分配的权重为1/η,由此可知,平均理论中乘积的平均化思想亦可用到加权理论 中,推导公式如下:
[0008]
[0009] η台异步电机并联结构如图1所示。
[0010] 根据加权思想,则可以得出总的电流值:
[0011]
[0012]
[0013]
[0014] 根据总的电流值和差值公式可以得出每台电机的电流值:
[0018]则有:
[0019] l a.
[0020] 定子磁链观测的电压-速度(U-N)模型关系式:
[0023] 则上式的公式可简化为:
[0021]
[0022]
[0024]
[0025] 对以上各式利用差值公式,根据倍比分权的理论推导过程,即可对电流、定子磁链 以及转子磁链进行加权和处理,处理结果如下:
[0026] 定子电流表达式:
[0027]
[0028] 定子磁链表达式:
[0029]
[0030] 转子磁链表达式:
[0031]
[0032] 电磁转矩表达式:
[0033]
[0034]
[0035] 倍比分权系数
[0036] η台电机的实际计算转矩分别为:1\,T2,…,Tn
[0037] 假设每台电机的权重系数非别为:1^,k2,…,kn
[0038]其中满足ki+k2+…+kn= 1
[0039] 选取任意一台电机的转矩值Tji= 1,2,···,η)作为参考值,计算各电机之间的倍 比系数叫,m2,…,mn:
[0040]
[0041] 得到倍比系数后,根据权重归一化的思想,可以计算出每台电机的实际权重值:
[0042]
[0043]
[0044]
[0045] 4)控制电路的选择,控制电路利用DSP开发板与功率开关管驱动电路板相结合的 硬件系统,DSP开发板对检测部分采集的信号作实际数据处理,根据实际的给定作比较,最 后生成供开关管动作的PWM信号,功率开关驱动电路板在接收到DSP输出的PWM信号后,驱 动对应的开关管使其动作。
[0046] 本发明的有益效果:本发明的一种适用于单逆变器驱动多台异步电机的控制算 法,相比基于平均算法的矢量控制系统而言,此算法基于直接转矩控制系统,这样不仅在控 制方式上比矢量控制简单,同时在算法上比平均算法更加准确,系统的稳定性和动态性能 也进一步得到提高,异步直流电机的电气参数必定存在一定的差别,每台异步直流电机的 实际工况又是不尽相同的,这主要受负载的影响,由此,为了能让所有异步直流电机都能有 效运转,并处于一定的稳态,这样就需要以一定的控制策略去实施控制,控制算法的核心在 于对电机实际的转速和转矩值进行倍比分权,异步直流电机所受扭矩越大,此时转速较小, 为保证其能正常运行,因此权重值要大些;相反,异步直流电机转速较大时,也即是所受转 矩较小,此时权重值需分配的小些。在动态过程中,权重值是时刻变化的,根据权重比值的 分配,最终模拟出单台异步直流电机的参数值,这样保证了实际需求,提高了系统系能。
【附图说明】
[0047] 通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、 目的和优点将会变得更明显:
[0048] 图1为本发明一种适用于单逆变器驱动多台异步电机的控制算法的单逆变器驱 动四台并联异步电机控制系统的原理框图;
[0049] 图2为本发明一种适用于单逆变器驱动多台异步电机的控制算法的η台异步电机 并联结构图;
[0050]图3为本发明一种适用于单逆变器驱动多台异步电机的权重系数曲线图;
[0051] 图4为本发明一种适用于单逆变器驱动多台异步电机的平均算法与加权算法下 的转速曲线图;
[0052] 图5为本发明一种适用于单逆变器驱动多台异步电机的平均算法与加权算法下 的转矩曲线图;
[0053] 图6为本发明一种适用于单逆变器驱动多台异步电机的加权算法模拟的制动过 程曲线图;
【具体实施方式】
[0054]为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合
【具体实施方式】,进一步阐述本发明。
[0055] 请参阅图1至图6,本发明提供一种技术方案:一种适用于单逆变器驱动多台异步 电机的控制算法,包括以下步骤:
[0056] 1)建立控制系统,控制系统包括主电路、检测电路和控制电路,主电路是逆变电路 和电机负载;检测回路主要是对电压、电流以及转速信号进行检测;作为一个闭环系统,控 制部分电路是将检测的反馈信号由于与实际给定作比较,从而进行实际的调节,达到控制 主回路的目的;
[0057] 2)主回路中的选择,逆变电路开关器件选择的是M0SFET,电机负载选择的是异步 直流电机,这样可以方便模拟能量回馈制动工作状况;
[0058] 3)控制电路的选择,控制电路是基于直接转矩控制的理论思想,直接转矩控制与 矢量控制方式相比,在动态模型上相对而言要简便,控制算法上,采用倍比分权的加权控制 策略,这样保证了所有异步直流电机不会出现给定不够以至于产生颠覆现象,在实际的计 算中,由于每台异步电机的工况不尽相同,这样输入电机的变量与电机的输出变量便会存 在一定的差异,根据实际的需求不同,对多台异步直流电机的同一变量需作权重衡量,与平 均理论推导过程类似,平均理论知识加权理论的一种特殊情况,即平均理论中η台电机的 同一变量分配的权重为1/η,由此可知,平均理论中乘积的平均化思想亦可用到加权理论 中,推导公式如下:
[0059]
[0060]η台异步电机并联结构如图1所示。
[006
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1