一种梯次电池组维护装置的制造方法

文档序号:9690170阅读:586来源:国知局
一种梯次电池组维护装置的制造方法
【技术领域】
[0001 ]本发明涉及新能源领域,尤其涉及一种梯次电池组维护装置。
【背景技术】
[0002]梯次电池组是指这样的一类电池组:电池组能量贮存已大大衰减,电池组内单体压差较大,内阻已明显增大且充放电循环次数已经达到一定程度。这些组成梯次电池组的电池大部分是由电动汽车淘汰下来的,虽然这样的电池已经不再适合在电动汽车上使用,但电池组能量贮存还处在额定容量的80%左右,还可以应用在其他领域,如果直接淘汰将造成严重的能源浪费。因此,为了最大化发挥和利用动力电池的剩余价值,延长动力电池的使用寿命,将这些动力电池组成梯次电池组实现再次利用。但是这些淘汰下来的电池,因为材料、工艺、运输工况的差异,往往会导致成组电池间的压差增大、单组电池发热严重等问题,需要进行维护,来保证整个电池组的正常运行。
[0003]现阶段,国内外对梯次电池组维护装置的研究还处在研发、设计初期阶段,尚未大规模推广,特别是国内,对动力电池的梯次利用还停留在概念上,现阶段的研究仍处于初步阶段,梯次电池组维护装置更是具有巨大的研究空间。目前的产品有美国AV公司的MT30等,该设备内置一套DC/AC变换电路通过单一的电压环或电流环控制来实现交流输入、直流输出,输出模式为单一恒压模式或单一恒流模式,主要是用于实验测试,价格昂贵。
[0004]因此,亟需一种价格低廉、能够实现宽范围直流电压输入输出、控制模式多样的梯次电池组维护装置来填补这一空白。

【发明内容】

[0005]本发明的目的是提供一种梯次电池组维护装置,用以解决现有梯次电池组维护装置成本高、波纹大、输入输出电压范围窄的问题。
[0006]为实现上述目的,本发明的方案包括:
[0007]—种梯次电池组维护装置,包括维护电路和监控单元,其特征在于,所述维护电路依次包括用于连接直流电源的第一级功率单元,以及用于连接梯次电池组的第二级功率单元,第一级功率单元包括第一 DC/DC电路;第二级功率单元至少包括并联的第二 DC/DC电路和第三DC/DC电路;第一 DC/DC电路输入端用于连接直流电源,输出端连接所述第二、第三DC/DC电路的输入端,第二、第三DC/DC电路的输出端用于连接梯次电池组。
[0008]进一步的,上述的DC/DC电路为电压可逆斩波电路,电压可逆斩波电路中两个全控型开关管分别与对应的二极管反向并联后相串联构成电流可逆斩波器,所述电流可逆斩波器的两端并联有电容。
[0009]进一步的,监控单元通过第一驱动装置、第二驱动装置、第三驱动装置上的各端子分别连接第一 DC/DC电路、第二 DC/DC电路和第三DC/DC电路中相应全控型开关管的相应极,分别控制三个DC/DC电路中相应全控型开关管的开通与关断。
[0010]优选的,第二级DC/DC电路中仅包含第二、第三DC/DC电路时,两个并联电压可逆斩波电路桥臂的驱动脉冲相位相差180°。
[0011]进一步的,第一级功率单元直流母线的电压控制方式如下:Ud。的电压参考值Udc^f与电压Udcffilfg送入PI控制器,其运算结果与电流参考值ibat-ref —起减去电流值ibat后再次送入PI调节器,其运算结果与前馈控制电压ubat相加后送入比较器,得到最终PWM脉冲信号以控制DC/DC功率单元中全控型开关管的开通和关断。
[0012]进一步的,第二级功率单元恒流控制模式如下:电流参考值ibat-ref减去电流值ibat后送入PI调节器,其运算结果与前馈控制电压ubat相加后送入比较器,得到最终P丽脉冲信号以控制DC/DC功率单元中全控型开关管的开通和关断。
[0013]进一步的,第二级功率单元恒压控制模式如下:Ubat的电压参考值Ubatref与电压Ubat相减后送入PI控制器,运送结果送入比较器后得到最终PWM脉冲信号以控制DC/DC功率单元中全控型开关管的开通和关断。
[0014]优选的,对应于锂电池梯次电池组,梯次电池维护装置采用纯恒流控制模式;对应于铅酸电池梯次电池组,梯次电池维护装置采用纯恒压控制模式。
[0015]本发明提出的梯次电池组维护装置,维护电路采用三套DC/DC电路串并联形成两级架构,使得该梯次电池组维护装置能够实现直流电压宽范围的输入输出,且第二级DC/DC电路采用载波移相技术,电压电流波纹大大减小;维护电路采用电压环、电流环的控制方式,使得电路动态响应更加迅速,且该梯次电池组维护装置具有恒压、恒流、先恒压再恒流等多种模式,满足不同类型电池组的需求;装置采用整体结构设计,具有成本低,性能好,易维护的特点。
【附图说明】
[0016]图1是梯次电池组维护装置框图;
[0017]图2是梯次电池组维护装置主电路;
[0018]图3是第一级功率单元直流母线电压控制框图;
[0019]图4是第二级功率单元恒流控制模式;
[0020]图5是第二级功率单元恒压控制模式。
【具体实施方式】
[0021 ]下面结合附图对本发明做进一步详细的说明。
[0022]如图1所示,梯次电池组维护装置主要由两级功率单元构成,第二级功率单元的第二、第三DC/DC电路并联后与构成第一级功率单元的第一 DC/DC电路通过电感形成桥式串联,第一级功率单元连接直流电源的输入端,第二级DC/DC功率单元连接梯次电池组。
[0023]下面结合附图2对梯次电池组维护装置的主电路做出进一步的详细说明。从图2中可以看出,DC/DC电路实际上是一个电压可逆斩波电路,在每个电压可逆斩波电路中,全控型器件选用IGBT,两个IGBT分别与一个续流二极管并联后相串联构成电流可逆斩波器,电流可逆斩波器的两端并联有电容器。从图2中可以看出,电流可逆斩波器-T1两端并联有电容器C2、电流可逆斩波器-T2两端并联有电容器C4、电流可逆斩波器-T3两端并联有电容器C5,两级DC/DC功率单元的输入端分别并联有一个滤波电容器C1、C3。两级DC/DC功率单元通过电感-1L1实现桥式连接,第二级DC/DC功率单元中的两个可逆电流斩波器的桥臂相并联,从而在两个桥臂通过驱动脉冲时,能够移相180°,实现电路中含有的交流噪音相互抵消,使得电路中的纹波电流和纹波电压减小。
[0024]每个电流可逆斩波器都对应一个控制驱动装置,电压可逆斩波电路中IGBT的栅极、集电极、发射极分别接到控制驱动装置中对应的C、G、E各端子,在控制IGBT开通和关断的同时还通过控制信号实现对DC/DC功率单元的能量流动方向的控制;每个控制驱动装置中的端子5和6为RG采样值,IGBT作为过温保护用。如图2中-T1降压斩波和升压斩波用IGBT的集电极、栅极、发射极分别接在控制驱动装置中-1D1的C1、G1、E1和C2、G2、E2上,-T2两个降压斩波用和升压斩波用IGBT的集电极、栅极、发射极分别接在控制驱动装置中-2D1的C1、G1、E1和C2、G2、E2上,-T3两个降压斩波用和升压斩波用IGBT的集电极、栅极、发射极分别接在控制驱动装置中-3D1的C1、G1、E1和C2、G2、E2上。三个控制驱动装置并联在一个光纤板连接控制器上,共用一个监控单元。
[0025]在梯次电池组维护装置接到
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1