场效应晶体管带通放大器的制作方法

文档序号:7524403阅读:337来源:国知局
专利名称:场效应晶体管带通放大器的制作方法
技术领域
本发明就用于各种收信机中的FET带通放大器作了说明。
背景技术
在AM收信机和FM(调频)收信机等的各种收信机中,使用着放大规定频带信号的带通放大器。作为代表性的带通放大器,有放大中频信号的中频放大器。在这个中频放大器中,仅选择性地放大中频附近狭窄频带的信号。这时候的中心频率被设定在一个固定的数值上,例如,在FM收信机中是10.7MHz,在AM收信机中是455KHz。为了在一般的中频放大器中,根据电场强度的强弱设定最适当的增益,连接了自动增益控制电路。例如,在AM收信机中,设置有根据AM检波电路的输出电平,把中频放大器的增益控制在最佳值上的自动增益控制电路。
在这里,为了在一般的带通放大器中得到规定的增益,采用了多级连接晶体管的多级放大器。这时候,如果各级晶体管中发生的噪声大,由于在各级的晶体管中放大并累积这个噪声,使得从末级晶体管中输出的信号中所含的噪声成分增加。若这种由带通放大器自身发生的噪声成分增大,就存在着当电场强度强的时候,带通放大器的增益又被控制在小的数值上时的残留噪声增加的问题。特别是在用CMOS工艺形成带通放大器的情况下,决定使用MOS型FET作为放大元件的时候。通常,由于MOS型FET比起双极型晶体管在低频端出现的1/f噪声大,需要采取某些措施。

发明内容
本发明正是鉴于这样的缺陷,而创造出来的,其目的在于提供可以降低增益控制时的残留噪声的FET带通放大器。
为了解决上述的课题,本发明的FET带通放大器具有多级放大器和控制这个多级放大器增益的增益控制电路。这个多级放大器配置有采用FET作为放大元件的级联的多级放大器和插入在多级放大器中段、设定了比放大频带更宽的通频带的带通滤波器。而且,放大器使用p沟道FET作为至少是从初级至第n级的FET。由于使用具有比放大频带更宽的通频带的带通滤波器,可以除去比该通频带低的一侧存在的1/f噪声和高频侧存在的热噪声。另外,由于放大元件使用了迁移率小的p沟道FET,可以进一步减小放大器内部的噪声。因而,在用带通滤波器除去前级部分各放大器中发生噪声的同时,由于使用p沟道FET作为这个前级部分各放大器的放大元件以及通过降低自身发生的噪声,使得在增益控制时,可以大幅度降低从末级放大器输出信号中所包含的残留噪声。另外,由于使用FET作为放大元件,就可以用FET的制造工艺把FET带通放大器整体形成在半导体基片上,比起使用双极型晶体管作为放大元件的情况来看,在容易达到集成化的同时,也可以谋求降低成本并节省空间。
另外,本发明的FET带通放大器配置有包含用FET作为放大元件的级联的多级放大器构成的多级放大器和控制该多级放大器增益的增益控制电路。各级的放大器具有从输入信号中除去比放大频带成分的上限值更高的高频成分的高频成分除去装置和从输入信号中除去比放大频带成分的下限值更低的低频成分的低频成分除去装置。而且,使用p沟道FET作为放大器的至少从初级至第n级的FET。在各级放大器中,由于除去了放大频带以外的成分,防止了噪声的累积。并且,由于使用迁移率小的p沟道FET作为放大元件,可以进一步减小放大器内部发生的噪声。于是,可以把从末级放大器输出信号中包含的残留噪声进一步减小。
特别是上述的低频成分除去装置,希望能是设定截止频率在比放大频带的下限值更低的数值上的高通滤波器。由于各级放大器中配置了高通滤波器,就可以很容易地除去比这个高通滤波器截止频率更低的1/f噪声。
另外,上述的放大器是使两个FET差动工作的差动放大器,低频成分除去装置希望是能把合成各级放大器的差动输出信号的低频成分的信号以同相位输入到两个FET上的反馈电路。由于合成的仅是差动输出信号中包含的低频成分并以同相位反馈到输入端。因为可以使对应于这个低频成分差动放大器的差动工作停止,就可以降低这个低频成分中包含的1/f噪声。
又,本发明的FET带通放大器配置有包含用FET作为放大元件的级联的多级放大器构成的多级放大器和控制该多级放大增益的增益控制电路。各级放大器具有从输入输出信号中除去比放大频带成分的上限值更高的高频成分除去装置。而且,使用p沟道FET作为放大器的至少从初级至第n级的FET。另外,还具有把比包含在末级放大器的输出信号中的放大频带成分的下限值更低的低频成分以反相状态反馈到初级放大器上的反馈电路。由于仅把包含在末级放大器的输出信号中的低频成分以反相状态反馈到初级放大器的输入端。因为消除了这个低频成分就可以除去包含在这个低频成分中的1/f噪声。由于用迁移率小的p沟道FET作为放大元件,就可以减小放大器内部自己发生的1/f噪声。
特别是上述的高频成分除去装置,希望能是把截止频率设定在比放大频带上限值更高的数值上的低通滤波器。由于在各级放大器的输出端配置了低通滤波器,就可以很容易地除去比这个低通滤波器截止频率更高的热噪声。
又,希望能用次级放大器中所含的FET的寄生电容作为这个低通滤波器所含的电容器。由于利用FET的寄生电容代替单体元件的电容器,可以减少元件个数,随之就可降低成本。特别是由于在半导体基片上形成的FET中生成的寄生电容,由于利用它,比起用单个电容器构成低通滤波器的情况来,可有效利用利用半导体基片上的空间,可以实现芯片的小型化等。
又,本发明FET带通放大器配置有包含用FET作为放大元件的级联的多级放大器构成的多级放大器和控制这个多级放大器增益的增益控制电路。并且,使用p沟道FET作为放大器至少至第m级所包含的放大元件。由于使用了迁移率小的p沟道型FET,就可以抑制1/f噪声的发生,从而可降低从末级放大器输出的信号中含有的残留噪声。
又,希望能使用p沟道型的FET作为包含在第m+1级以后的放大器中的放大元件。有助于防止放大器的饱和程度,而由于把少数后级放大器中包含的FET选用为n沟道型FET,比起全部使用p沟道型的FET来,可以使多级的占有面积小型化。
又,希望能把第m级以前的放大器中所含的FET的沟道长L和沟道宽W设定在比第m+1级以后的放大器中所含的FET的沟道长L和沟道宽W有更大的数值。有助于防止放大器的饱和程度,由于仅把大多数前级放大器中所含的FET的沟道长L和沟道宽W设置在大的数值上,比起全部FET增大这些值来,可以实现多级占有面积的小型化。
又,作为放大元件,当着眼于包含在多级连接中的多个放大器时,希望能把前级配置的放大器中包含的FET的沟道长L和沟道宽W设定在比它后级配置的放大器中所含的FET的沟道长L和沟道宽W更大的数值上。通常,在FET中发生的1/f噪声,很大程度上与沟道长L和沟道宽W各自的倒数成正比。因而,把沟道长L和沟道宽W设定在大的数值上,就可以降低这个FET中发生的1/f噪声。特别是考虑到多级连接的FET时,由于前级部分包含的FET中发生的1/f噪声被它后级的FET放大。所以,降低前级部分FET中发生的1/f噪声,为降低整体低频噪声是理想的。再者,由于后级部分所含FET中发生的1/f噪声比它更后级的FET中被放大的程度要小,故认为有助于整体低频噪声降低的比例。因而,通过把后级部分所含的FET的沟道长L和沟道宽W选取在比它的前级FET的那些值小的数值上,就可以缩小FET的占用面积,可以谋求由芯片的小型化带来的成本降低。
又,当着眼于作为放大元件的多级连接的多个放大器的FET时,最好能设定每个FET的沟道长L和沟道宽W,以使由这个FET发生的噪声成分比该FET的输入信号中所含的噪声成分来得小。由于把任意一个FET中发生的噪声成分降低至比该FET的输入信号中的噪声成分更小。所以,整体的低频噪声的降低即成为可能。
此外,希望能用CMOS工艺或MOS工艺在半导体基片上一体化形成构成部件。由于使用这些工艺,比起采用双极型工艺等的情况来,可以简化工艺,可以把部件成本和包含FET带通放大器的产品成本降低。
再者,希望能在上述的半导体基片上形成N型阱,在这个N型阱上形成全部或部分构成部件。通过把构成部件的全部或部分形成在N型阱上,使形成的pn结介于在N型阱与其下方的半导体基片之间并可防止流过噪声电流,可以防止N型阱上方的电路中发生的噪声通过半导体基片传入到其它部件上。
另外,最好能在上述的半导体基片上,在构成部件的周围形成保护环。这样一来,可以进一步有效防止N型阱上方所形成的电路中发生的噪声通过半导体基片传入到其它部件上。
最后,上述的保护环希望能形成在从半导体基片表面起至比N型阱更深的位置上。由于把保护环形成在很深的位置,就可以除去超过这个保护环传入的低频范围的1/f噪声。


图1是表示包含第1实施例的FET带通放大器的AM收信机的一般构成图。
图2是表示第1实施例的FET带通放大器的构成图。
图3是表示包含图2的FET带通放大器的放大器构成电路图。
图4是表示AGC电路的详细构成的电路图。
图5是表示时间常数电路的原理方框图。
图6是表示时间常数电路的具体构成的电路图。
图7是表示时间常数电路的变形例的电路图。
图8是表示MOS型的FET的栅尺寸的图。
图9是表示第2实施例的FET带通放大器的构成电路图。
图10是表示包含图9的FET带通放大器的放大器构成图。
图11是表示通过利用FET的寄生电容来减少电容器数量的放大器构成电路图。
图12是表示第3实施例的FET带通放大器的构成图。
图13是表示包含图12的FET带通放大器的放大器构成图。
图14是表示第4实施例的FET带通放大器的构成图。
图15是表示第5实施例的FET带通放大器概略构造的平面图。
图16是表示于图15的构造的剖面图。
BPF4、6设置在作为中频放大电路工作的FET带通放大器5的前级和后级上。从输入的中频信号中仅抽出455KHz附近的频率成分。FET带通放大器5包含AGC电路(自动增益控制电路),根据这个AGC电路控制的增益,放大包含中频信号的规定的频带成分。AM检波电路7对由FET带通放大器5放大后的中频信号进行AM检波处理。
图2是表示本实施例的FET带通放大器5的构成图。如图2所示,本实施例的FET带通放大器5的构成包含有构成多级放大器的5级放大器11-15,插入在第3级放大器13与第4级放大器14之间的BPF 16,基于AM检波电路7的输出信号进行增益控制工作的AGC电路8。放大器11-15的每一个有规定的增益、在FET带通放大器5的整体中具有使各放大器11-15的增益相互牵连的增益。这个FET带通放大器5与其它电路一起是在半导体基片上使用CMOS工艺或MOSI工艺一体形成的。于是,由于制造工序的简化带来的部件或AM收信机整体的产品成本的降低成为可能。
图3是表示包含FET带通放大器5的各级放大器的详细构成图。放大器11-15的每一个具有相同的结构,以下就放大器11进行详细的说明。
如图3所示,本实施例的放大器11的构成包含以下的部分生成恒电流的FET 201、202,电流源203,差动放大输入信号的两个FET204、205,根据控制信号V+、V-可改变这两个FET 204、205的差动输出的增益的4个FET 206、207、208、209,两个负载电阻212、213。来自前级电路(BPF4)的输入信号(IN+、IN-)被输入到FET 204、205上、来自AGC电路的控制信号(V+、V-)被输入到FET 206-209上。这个结构包含的FET 201、202、206-209全部采用p沟道型的FET。
图4是表示AGC电路8的详细结构的电路图。如图4所示,本实施例的AGC电路8的构成包含以下部分以规定的时间常数平滑输入信号的时间常数电路10,产生规定电源电压Vr的电源300,把这个电源电压Vr作为工作电压来放大时间常数电路100的输出电压的放大器301,生成恒电流的两个FET 302、303,电流源304,由电源300产生的电源电压Vr和差动放大放大器301的输出电压的两个FET 305、306,以及两个电阻307、308。
在时间常数电路中,为了平滑AM检波电路7的输出信号,输出电压上升时的响应时间(时间常数)与输出电压减小时的响应时间被设定在不同的数值上。例如,电压上升时的响应时间设定在500msec,电压减小时的响应时间设定在300-500msec。放大器301放大时间常数电路100的平滑输出,输出电压在0V至电源电压Vr的范围内变化。
也就是说,在AM检波电路7的输出信号电压电平小的时候,由于时间常数电路100的输出电压变低,放大器301的输出电压处在接近于0V的一个很小的数值上。因而,如果着眼于进行差动工作的两个FET 305、306,一个FET 305的栅上外加有电源电压Vr,另一个FET 306的栅上外加有接近于0V的低电压、从每一个的漏极上就会输出具有大电位差的两个控制信号(V+、V-)。这个控制信号如果进入到上述的放大器11中,由于通过两个FET 206、207或两个FET208、209进行差动工作,放大器11整体的增益变高,从放大器11就会输出具有大电位差的差动输出信号(OUT+、OUT-)。
另外,如果AM检波电路7的输出电压的电平增大,则由于时间常数电路100的输出电压增高,放大器301的输出电压就会达到接近于电源电压Vr的数值。因而,如果着眼于进行差动工作的两个FET 305、306,则一个FET 305的栅上外加有电源电压Vr、另一个FET 306的栅上外加有电源电压Vr或接近于电源电压Vr的电压,以每个漏极上就会输出电压电平大致相等的两个控制信号(V+、V-)。这个控制信号一旦输入到上述的放大器11上,由于用两个FET 206、207或两个FET 208、209几乎不能作差动工作,放大器11的整体增益就变低,从放大器11输出具有小电位差的差动输出信号(OUT+、OUT-)。
图5是表示时间常数电路100的原理方框图。如图5所示,本实施例的时间常数电路100配置有电容器110,电压比较器112,充电电路114,放电电路116,充放电速度设定部分118。电压比较器112把电容器110的端子电压与输入电压进行比较,根据这个比较结果使充电电路114或放电电路116的工作置于有效。充电电路114通过间歇性的供给充电电流给电容器110充电。例如,这个充电电路114由恒流电路和所含的开关构成,当开关处于接通(on)状态时,从恒流电路对电容器110供给充电电流。另外,放电电路116通过间歇性地流过放电电流使电容器110放电。例如,这个放电电路116由恒流电路和包含的开关构成,当开关处于on状态时,从电容器110中放出规定的电流。充放电速度设定部分118把取决于充电电路114的电容器110的充电速度和取决于放电电路116的电容器110的放电速度进行不同的设定。
这样,本实施例的时间常数电路100对电容器110进行间歇性的充放电工作。于是,即使把电容器110的静电容量设定在小的数值上时,只要两端的电压缓慢变化,也会是具有大时间常数的电路,也就是说可以得到与使用大容量电容器和大阻值电阻的情况同等的充放电特性。另外,在充电电路114和放电电路116中,进行向电容器110供给规定的电流或从电容器中放出电流的控制,而由于这些电流供给、电流放出是间歇地进行的,就可以把此时的电流值设定在适合于IC化的某个大小的数值上。因而,可以把包含时间常数电路100的AGC电路8整体作IC化,一体形成在半导体基片上。此外,由于不需要电容器等的外附元件,就可以把AGC电路8整体大幅度地小型化。
此外,本实施例的时间常数电路100通过充放电速度设定部分对电容器110的充电速度和放电速度作了不同的设定。于是,就可以使AGC电路8的电平上升时间和释放时间不同。
图6是表示时间常数电路100的具体构成的电路图。如图6所示,时间常数电路100的构成包含以下的部分电容器110,恒流电路140,FET 142、144、150、154、156,开关146、152,电压比较器160,“与”电路162、164,分频器170。
用两个FET 142、144构成电流反射镜电路、产生从恒流电路输出的恒电流和相等的充电电流。另外,这个充电电流的生成定时由开关146决定。
开关146由倒相电路a和模拟开关b以及FET c构成。模拟开关b由并联p沟道FET与n沟道FET的源极、漏极来构成。“与”电路的输出信号直接输入到n沟道FET的栅极上的同时,用倒相电路反相这个输入信号的逻辑后的信号输入到p沟道FET的栅极上。因而,这个模拟开关b在“与”电路162的输出信号高电平时变成ON状态。相反,在低电平时变成OFF状态。此外,当模拟开关b在OFF状态时,FEC c通过用低电阻连接在FET 144的栅、漏极之间,使由FET 144产生的电流供给动作可靠地停止。
开关146如果在ON状态,则连接恒流电路140的一个FET 142的栅极和另一个FET 144的栅极变成了连接状态。所以,由连接在一个FET 142上的恒电流电路140产生的恒电流也以大致相同的电流流过另一个FET 144的源极、漏极间。这个电流作为充电电流供给电容器110。相反,开关146如果处于OFF状态,则变成FET 144的栅极被连接至漏极的状态,故这个充电电流的供给也就停止。
另外,通过组合FET 150至上述的FET 142和恒流电路140上即构成设定电容器110的放电电流的电流反射镜电路,其工作状态由开关152决定。开关152具有与开关146相同的结构。这个开关152“与,,电路164的输出信号的逻辑控制ON、OFF状态,这个输出信号在高电平时成为ON状态,在低电平时成为OFF状态。
如果开关152处在ON状态,则连接恒流电路140的一个FET 142的栅极和另一个FET 150的栅极成了连接状态。所以,由恒流电路140产生的恒电流也以大致相同的电流流向另一个FET 150的源极、漏极之间。这个电流构成放出存储在电容器110中的电荷的放电电流。
但是,由于不能从电容器110中直接取出流过FET 150的电流,在本实施例中,在FET 150的源极一侧连接有由FET 154、156构成的另一个电流反射镜电路。
两个FET 154、156的栅极彼此连接,上述的放电电流流经FET154时,就会有在另一个FET 156的源极、漏极间也流过相等的电流。这个FET 156是在电容器的高电位一侧的端子上连接漏极、流经FET156的电流是由放出存储在电容器110上蓄积的电荷生成的。
另外,电压比较器160把加在正端子上的电容器110的端子电压与加在负端子上的时间长数电路100的输入电压进行大小比较。这个电压比较器160具有非反相输出端子和反相输出端子,加在正端子上的电容器110的端子电压这一方比加在负端子上的输入电压高的时候,从非反相输出端子输出高电平的信号,从反相端子上输出低电平信号。相反,加在正端子上的电容器110的端子电压一方比加工负端子上的输入电压低的时候,从非反相端子输出低电平信号,从反相端子上输出高电平信号。
“与”电路162的一个端子上输入规定的脉冲信号,另一个输入端子上连接电压比较器160的非反相输出端子。因而,电容器110的端子电压的一方比时间常数电路100的输入电压高的时候,从“与”电路162输出规定的脉冲信号。
另外,“与”电路164的一个输入端子上输入从分频器170输出的规定的脉冲信号,另一个输入端子上连接电压比较器160的反相输出端子。因而,当电容器110的端子电压一方比时间常数电路100的输入电压低的时候,从“与”电路164输出规定的脉冲信号。
分频器170把输入到“与”电路162的一个输入端子上的脉冲信号按规定的分频比分频并输出。如上所述,这个分频后的脉冲信号被输入到“与”电路164的一个输入端子上。
时间常数电路100有这样的结构,下面说明其工作。
在时间常数电路100的工作开始时,电容器110没有被充电时,以及时间常数电路100的输入电压(AM检波电路7的输出电压)处在上升倾向的时间,处在电容器110的端子电压比时间常数电路100的输入电压低的状态下。这时,从“与”电路162输出脉冲信号,从“与”电路164不输出脉冲信号。因而,仅是开关146间歇性地处于ON状态,以这个处于ON状态的计时,把规定的充电电流供给电容器110。这个充电动作继续至当电容器110的端子电压比时间常电路100的输入电压相对高的时候为止。
另外,由于这个充电动作使电容器110的端子电压超过时间常数电路100的输入电压时或这个输入电压比电容器110的端子电压处在下降倾向情况时,在该输入电压一方低的情况下,从“与”电路164输出脉冲信号,从“与”电路162不输出脉冲信号。因而,仅是开关152处在间歇的ON状态,用这个ON状态的定时从电容器放出规定的放电电流。这个放电动作继续至当电容器110的端子电压比时间常数电路100的输入电压相对低的时候为止。
此外,若把从上述的两个“与”电路162、164输出的两种脉冲信号进行比较,由于“与”电路162输出的脉冲信号的占空比从“与”电路164输出的脉冲信号的占空比大。所以,若考虑到从两个“与”电路162、164的每一个仅以相同时间输出脉冲信号的情况下,则每单位时间的充电速度比放电速度快。于是,AGC电路8的电平上升时间比释放时间就来得短。
再者,在上述的时间常数电路100中,为了从两个“与”电路162、164输出占空比不同的脉冲信号,使用了分频器170,但是,也可以分别生成的不同占空比的脉冲信号分别输入到两个“与”电路162、164中。
另外,在上述的时间常数电路100中,由于对电容器110的充电速度与放电速度不同,FET 144,150各自达到ON状态的每个单位时间的比率也不一样,这是由于这些FET的栅尺寸不同造成的,也可以使充电电流与放电电流的值不一样。
图7是表示时间常数电路变形例的电路图。图7所示的时间常数电路100A与图6所示的时间常数电路100相比较,在删除分频器170的同时,把两个FET 144、150变更成改变了栅尺寸的两个FET144A、150A,这是它们的不同点。
图8是表示MOS型FET的栅尺寸的图。即使栅电压相同、由于改变了栅的宽度W和栅的长度L,沟道电阻也就改变。所以,流过源极、漏极间的电流也发生变化。在本实施例中,为了想把充电电流加大及上升时间缩短,就要把FET 144A的栅宽W设定在大的数值上,把栅长L设定在小的数值上。若想把放电电流减小及释放时间增长,就把FET 150A的栅宽W设定在小的数值上、栅长L设定在大的数值上。这样一来,只要使FET 144A、150A各自的栅尺寸不相同,就可以很容易地使AGC电路8的电平上升时间和释放时间不一样。
这样,包含在本实施例的FET带通放大器5中的放大器11具有进行差动工作的两个FET 204、205,并通过4个FET 206-209和AGC电路8其增益被控制在A1上。同样,如果把其它放大器12-15的每一个增益取为A2、A3、A4、A5,则FET带通放大器5作为整体,理论上就可以实现A1A2A3A4A5的增益。
这里,在放大器11-15的每一个中都有1/f噪声和热噪声发生。1/f噪声是出现在低频区域的噪声,频率越低,噪声电平越高。相反,热噪声是出现在信号的高频区域的噪声,频率越高,噪声电平越高。MOS型FET产生的噪声电压可以表示为Vn=((8kT(1+η)/(3gm)+KF/(2f CoxWLK’))Δf)…(1)式中,k是波尔兹曼常数,T是绝对温度,gm为互导,Cox为将栅氧化膜夹于中间的栅极与沟道间的电容,W为栅宽,L为栅长,f为频率,Δf为频率f的带宽。KF是噪声参数,为10-20-10-25左右的值。另外,η,K’是规定的参数。
上式中,右边第1项是表示热噪声的项,温度(T)升高,其值增大。右边第2项是表示1/f噪声的项,与f的倒数成正比。
若把放大器11-15的每一个中发生的噪声(1/f噪声与热噪声之和)取为en1、en2、en3、en4、en5,则包含在放大器11-15的每个输出信号中的噪声电平e1、e2、e3、e4、e5即为如下所示e1=en1e2=e1A2+en2=en1A2+en2e3=e2A3+en3=(en1A2+en2)A3+en3e4=e3A4+en4=[(en1A2+en2)A3+en3]A4+en4e5=e4A5+en5={[(en1A2+en2)A3+en3]A4+en4}A5+en5…(2)于是,在放大器11-15的每一个之间输入输出的信号上,含有的主要是存在于低频区域的1/f噪声和主要是存在于高频区域的热噪声。而且,越是后级的放大器越大,这些噪声被一边放大,一边累积。因而,即使把AGC电路的增益控制在一个小的数值上,如果前级部分的放大器(例如第1级和第2级的放大器11、12)中产生的噪声电平大,则噪声至从末级放大器15输出时已过大,就会造成所形成的巨大残留噪声输入到后级的电路中。
为了避免这种不良情况,在本实施例的FET带通放大器5中,使用了BPF 16。这个BPF 16在使放大频带的成分(包含在信号中想要放大的成分)通过的同时,总是要除去上述的1/f噪声和热噪声。在考虑示于图1的本实施例的AM收信机时,仅仅把455KHz附近的中频信号的频带用FET带通放大器5放大即可。因而,作为BPF 16的特性,把下侧的截止频率(kHz)设定在可以充分除去455-α(2α是中频信号的频带)以下的1/f噪声的值上。同时,把上侧的截止频率设定在可以把455+α以上的热噪声可充分除去的值上。
另外,把由前级部分的放大器产生的噪声用BPF 16除去是必要的。在本实施例中,在第3级放大器13与第4级放大器14之间插入BPF 16。
就这样,用这个BPF 16除去连接在BPF 16前级一侧的放大器11、12、13中产生的噪声成分,从末级放大器15输出的信号中包含的残留噪声就可降低。
再者,当根据AGC电路8把放大器11-15的各增益作低设定的时候,通过把BPF 16设置在末级放大器15的近傍,就可以有效地除去从放大器15输出的信号中含有的噪声。而当用AGC电路把放大器11-15的各增益作高设定的时候,前级放大器中的噪声形成比末级放大器15的大,由于考虑到放大器的饱和,需要配置在不发生饱和的位置上。
这样一来,在本实施例的FET带通放大器5中,BPF 16被插入到第3级放大器13与第4级放大器14之间。至此,由于除去了已放大的1/f噪声和热噪声,从末级放大器15中输出的信号中所含的残留噪声就可以降低。因此,即使由于AGC电路8的FET带通放大器5的增益被设定在十分小的数值上时,也可以降低收信机的输出声音中含有的刺耳的残留噪声电平。
另外,在各放大器11-15中,作为所包含的放大元件使用了迁移率小的p沟道FET,各放大器内部产生的噪声可以进一步降低。所以。由FET带通放大器5产生的噪声就可进一步降低。
特别是与双极型晶体管相比的MOS型FET,由于1/f噪声大,若想要多级连接构成FET带通放大器,在不能采取噪声对策的时候,就会有1/f噪声增大,残留噪声过大的情况。因而,用MOS工艺或CMOS工艺并把FET带通放大器5或包含其它电路的全部元件一体化形成在半导体基片上的时间,用BPF 16或使用p沟道FET作为消除噪声的对策,把FET带通放大器5和其它电路一体形成在半导体基片上并实现IC化,即是有效的手段。
另外,在本实施例中,对于全部放大器11-15使用了p沟道型FET,但也可以对从初级至第n级(例如第2级)的放大器使用减噪声效果好的p沟道型FET。这样做的结果,可以有效降低累积的噪声成分。[第2实施例]在上述的第1实施例中,是采用在第3级放大器13的后级上插入BPF的办法来除去噪声成分,但也可以采用在各级放大器中除去噪声成分的办法。
图9是表示第2实施例的FET带通放大器的构成的电路图。图9所示的本实施例的FET带通放大器5A的构成包含以下的部分构成级联的多级放大器的5级放大器11A、12A、…15A和AGC电路8。各放大器11A-15A的结构基本上是相同的,以下着眼于初级放大器11A来说明详细的结构和工作。
图10是表示包含图9的FET频带放大的放大器构成图。如图10所示,本实施例的放大器11A的构成包含以下部分产生恒流的FET201、202,电流源203,差动放大输入信号的两个FET 204、205,按照控制信号V+、V-可改变这两个FET 204、205的差动输出增益的4个FET 206、207、208、209,从输入信号除去直流成分的两个电容器210、211,两个负载电阻212、213。来自前级电路(BPF4)的输入信号(IN+、IN-)被输入到FET 204、205上,来自AGC电路8的控制信号(V+、V-)被输入到FET 206-209上。包含在这个结构中的FET 201、202、206-209全部使用p沟道型的FET。再者,分别连接在电容器210、211的一端上的电阻220、221与这些电容器210、211一起构成高通滤波器,除去来自输入信号的含有闪变噪声(1/f噪声)的低频成分。这些电阻220、221、电容器210、211对应于低频成分除去装置。另外,分别并连在电阻212、213上的电容器222、223与这些电阻212、213一起构成低通滤波器,从输出信号中除去含有热噪声的高频成分。这些电阻212、213,电容器222、223对应于高频成分除去装置。
这样一来,在初级放大器11A中,在除去包含在输入信号的低频成分中的1/f噪声的同时,也除去包含在输出信号的高频成分中的热噪声。
在这里,上述的放大器11A中,把电容器222、223并列连接到电阻212、213上。但这些电容器222、223也可以插入到FET 206、207等的每个漏极和接地以外的固定电位之间。
另外,这些电容器222、223,也可以利用包含在放大器11A中的FET的寄生电容。
图11是通过利用FET的寄生电容而减少了电容器数量的放大器的构成电路图。图11所示的放大器11B比起图10所示的放大器11A的结构来,省略了电容器222、223,这一点与加大设定FET206-209的栅长L和栅宽W的情况是不同的。
一般情况下,已经知道FET产生的噪声电流与栅长的倒数成正比。因而,通过加长设定栅长L,可以降低噪声电流。在这里,如果加长栅的长度L,则沟道电阻会增大。所以,加宽设定该部分的栅宽W,就希望降低沟道的电阻。这种加大栅长L和栅宽W也就是加大了栅电极的面积,寄生电容也就增大。因此,可以实现确保某个大小的容量值,即可用这个寄生电容代替电容器222、223。
于是,通过把栅长L和栅宽都加大来使寄生电容加大之后以省略电容器222、223,就可以把信号的高频成分,亦即热噪声有效地除去。另外,由于省略了电容器222、223,无疑就可以降低成本。[第3实施例]
图12是表示第3实施例的FET带通放大器的构成电路图。图12所示的本实施例的FET带通放大器包含有以下的部分构成级联的的多级放大器的5级放大器11C、12C、…15C,从末级放大器15C向外部取出信号的同时反馈回初级放大器11C的附加电路,AGC电路8。放大器11C-15C的每一个具有相同的结构。
图13是表示放大器11C的详细结构图。这个放大器11C相对于图11所示的结构,具有省略了电阻220、221和电容器210、211的结构。
另外,配置在本实施例的FET带通放大器上的附加电路包含有由FET 431和恒流电路433组成的源跟随器电路450,从FET 432和恒流电路434组成的源跟随器电路451,由电阻435、437、电容器439、441组成的LPF 452,由电阻436、438,电容器440、442组成的LPF453。
从末级放大器15C输出的一个差动输出信号通过源跟随器电路450作为FET带通放大器的一个输出信号取出的同时,通过LPF 452和电阻443被反馈到初级放大器11C的一个输入端子上。同样,从末级放大器15C输出的另一个差动输出信号通过源跟随器电路451作为FET带通放大器的另一个输出信号取出的同时,通过LPF 453和电阻444反馈到初级放大器11C的另一个输入端上。
由于本实施例的FET带通放大器中含有5级(奇数个)的放大器11C-15C,相对于输入初级放大器11C中的信号相位,从末级放大器15输出的信号相位被反相。因而,仅仅是把从源跟随器电路450、451输出的信号的低频成分由LPF 452、453抽出并反馈到初级放大器11C上,使对应于低频成分的增益下降,仅把这个成分除去,其它的则不除去。也就是说,由于形成图12所示的反馈环路,构成了低频成分除去装置,可以有效地除去包含在低频成分中的1/f噪声。
这样一来,在FET带通放大器的整体上形成反馈电路并仅把输出信号的低频成分反馈到初级放大器11C的输入端,也就可以有效地除去1/f噪声。另外,由于除去各级放大器11C-15C中的高频成分,可以有效地除去这个高频成分中所含的热噪声。
再者,在图13所示的本实施例的放大器11中,利用FET的寄生电容除去信号的高频成分,而与上述的图10所示的第2实施例一样,也可以使用电容器。这时,在图13所示的电阻212、213上并联电容器就行了。[第4实施例]在上述的各实施例中,为了去除使用频带外所含的噪声,在多级连接的多个放大器的中间或在各级上配置BPF等来构成FET带通放大器,而在不配置BPF的情况下,在各级放大器中也可以采用其它的对策。
图14是表示本实施例的FED带通放大器5D的构成图。图14所示的FED带通放大器5D配置了构成级联的多级放大器的多个放大器11D-15D和AGC电路8。这个FET带通放大器5D与其它的电路一起用CMOS工艺或MOS工艺一体形成在半导体基片上。
上述的多个放大器11D-15D对从初级至第n级施行了噪声对策。例如,作为噪声对策,有单独使用p沟道MOS型的FET的方法和加大MOS型的FET的栅宽W及栅长L的方法,或者组合使用之。
由于使用p沟道MOS型的FET,出现在低频区域的1/f噪声的降低是可能的,如前面说过的那种把FET带通放大器一体形成在半导体基片上的情况是特别有效的方法。
如上所述,(1)式右边的第2项是表示1/f噪声的部分,在这一项中,图为栅宽W和栅长L作为分母,把栅宽W和栅长L设定在大的数值上就可以降低1/f噪声。另外,如果增大栅宽W和栅长L,则FET的寄生电容也增大,对除去出现在高频区域的热噪声是有效的。
这样一来,由于在从初级至第n级的各放大器中施行噪声对策,就可以削减在后级放大器中放大和累积的噪声成分。所以,把从末级放大器15D输出的信号中含有的残留噪声有效地降低即成为可能。
这里,若把放大器11D-15D的每一个放大器产生的噪声(把1/f噪声和热噪声合计后的噪声)取为en1、en2、en3、en4、en5,把放大器12D-15D的每一个增益取为A2、A3、A4、A5,则放大器11D-15D的每一个输出信号中含有的噪声电平e1、e2、e3、e4、e5由前面说过的(2)式表示出来。
由于对全部放大器11D-15D施行噪声对策,最终的噪声得到减小,而如果把全部的FET设计成p沟道型的FET,则与使用n沟道型的FET的情况相比,元件面积增大。另外,也与增加栅宽W和栅长L的情况相同,施行这个噪声对策时,元件面积增大。特别是把FET带通放大器一体形成在半导体基片上的情况,由于占有面积的缩小而得到高密度化,在谋求降低成本等的同时,由于噪声而可以有效防止放大器的饱和。因此,希望能对从初级至第n级的放大器施行上述的噪声对策。
具体地说,第m级放大器输出的信号中所含的噪声电平em,对第m+1级不施行噪声对策时,由其产生的噪声电平就十分大(例如数倍),即使对第m+1级以后的放大器施行噪声对策也不会得到大的效果。因此,如果对第m级放大器施行上述的噪声对策就会有良好的效果。因此,把FET带通放大器一体形成在半导体基片上,就可以得到芯片面积的小型化并防止由噪声引起饱和的效果。
这里,就某一级放大器中所含的FET的栅宽W和栅长L是否要大于它以后的放大器中所含的FET的栅宽W和栅长L的问题,以上述为宜。
考虑到多级连接放大器的情况时,由于前级放大器所含的FET中产生的1/f噪声在它的后级放大器中所含的FET中被放大。因此,降低前级放大器所含的FET中产生的1/f噪声对降低整体低频噪声是理想的。另一方面,由于后级放大器中所包含的FET发生的1/f噪声在更后一级放大器的FET中被放大的程度小。所以,认为对整体低频噪声降低的贡献比例小。因而,把这个后级的放大器所含的FET的沟道长L和沟道宽W的数值取在比它前级的放大器所含的FET的值要小,就可以缩小FET占有的面积,可以实现芯片的小型化带来的成本降低。
或者,当着眼于图14所示的任意位置的放大器中所包含的FET时,设定每个放大器所含的FET的沟道长L和沟道宽W,使由这个FET产生的噪声成分比这个FET的输入信号中所含的噪声成分小。由于任意一个放大器中所含的FET中发生的噪声成分比该FET的输入信号中噪声成分小,就使整体低频噪声的降低成为可能。
另外,把第m级以前的放大器用p沟道MOS型的FET构成,把m+1级以后的放大器用n沟道MOS型的FET构成的方法对于从上述的第1实施例至第3实施例的各FET带通放大器都可适用。即使在这种情况下,也可以得到芯片面积的小型化和由于噪声的降低而防止饱和的效果。[第5实施例]在上述的各实施例中,把FET带通放大器和其它电路一体形成在半导体基片上时,由于把作为放大元件所使用的p沟道型FET的各级放大器形成在N型阱上,可以防止噪声通过半导体基片流入到其它电路上。
图15是表示第5实施例的FET带通放大器5E的概略构造平面图。此外,图16是图15所示构造的剖面图。在图15所示的构造中,当各级放大器都用p沟道型的FET构成的情况下,这个FET带通放大器5E的全部部件都形成在N型阱52上。再者,当第m级之前的各级放大器都使用p沟道型的FET构成的情况下,该第m级之前的各放大器的全部部件都形成在N型阱上。
由于在N型阱52与p型半导体基片50之间形成PN结,N型阱52的电位比半导体基片50的电位更高的时候,由这个PN结断开从N型阱52流向半导体基片50的电流。这样,就可以防止形成在N型阱上方的电路中产生的噪声通过半导体基片进入到其它电路中。
特别是由于把第m级以前各放大器形成在N型阱52上,就可以防止在第m级以前的放大器中产生的噪声通过半导体基片进入到第m+1级以后的放大器中。因此,就可以降低FET带通放大器内的第m+1级以后的放大器中被放大、累积的噪声电平。
另外,如图16所示,在半导体基片50的表面附近,围绕着N型阱道52的周边区域上形成保护环54。这个保护环54是把p型半导体基片50的一部分形成在N型区域上的结构。由于保护环54与半导体基片50形成PNP层,就可以有效防止形成在N型阱52上面的电路中产生的噪声通过半导体基片50的表面附近进入到其它电路。
特别是这个保护环54达到半导体基片更深层的区域。例如,希望能形成至达到比N型阱52更深的地方。于是,当形成在N型阱52上面的电路中产生的噪声通过保护环54的下侧(半导体基片50的内部)进入到其它电路时,可以防止较低频成分的进入。因而,由于,把第m级以前的各放大器形成在N型阱52上,就可以防止第m级以前的放大器中产生的1/f噪声通过保护环54的下侧进入到第m+1级以后的放大器中,进而可降低在FET带通放大器内的第m+级以后的放大器中被放大和累积的噪声电平。
再有,本发明并限定于上述的实施例,可以在本发明的要点范围内实施种种的变形。例如,在上进的实施例中是用串连的5级放大器构成FET带通放大器,但这个级数也可以根据FET带通放大器的整体增益设定程度加以适当变更。
另外,在上述的实施例中,对用于AM收信机的中频放大器的FET带通放大器5等作了说明,而对FM收信机和直接变换收信机等的其它收信机和收信机以外的装置中使用的FET带通放大器,本发明也能适用。
产业上利用的可能性如上所述,如果使用本发明,由于使用具有比放大频带更宽的通频带的带通滤波器,可以除去存在于这个通频带低频端的1/f噪声和存在于高频端的热噪声。此外,由于放大元件使用了迁移率小的p沟道FET,可以进一步减小放大器内部发生的噪声。因而,在用带通滤波器除去前级部分的各放大器中发生噪声的同时,由于这个前级部分的各放大器的放大元件使用了p沟道FET,通过降低自身发生的噪声,可以地增益控制时大幅度地降低从末级放大器输出的信号中含有的残留噪声。再者,由于放大元件使用FET,可以用FET的制造工艺把FET带通放大器整体制作在半导体基片上,比起用双极型晶体管作为放大元件的情况来,具有容易集成化的同时,还可以实现成本降低并节省空间。
权利要求
1.一种设有多级放大器以及控制该多级放大器的增益的增益控制电路的FET带通放大器,其中所述多级放大器包含,用FET作为放大元件的级联的多级放大器,以及插入在所述多级放大器的中段、设定在比放大频带更宽的通频带上的带通滤波器;用p沟道FET作为所述放大器的至少从初级至第n级的所述FET。
2.如权利要求1所述的FET带通放大器,其特征在于用所述p沟道FET作为包含所述放大器的全部放大元件。
3.如权利要求1所述的FET带通放大器,其特征在于采用CMOS工艺或MOS工艺,在半导体基片上一体形成构成部件。
4.如权利要求3所述的FET带通放大器,其特征在于在所述半导体基片上形成N型阱,在该N型阱上形成所述构成部件的全部或一部分。
5.如权利要求4所述的FET带通放大器,其特征在于所述半导体基片上,在所述构成部件的周围形成保护环。
6.如权利要求5所述的FET带通放大器,其特征在于所述保护环形成于从所述半导体基片表面至比所述N型阱更深的位置。
7.一种用p沟道型FET作为所述放大器的至少从初级至第n级的所述FET的FET带通放大器,其中设有由包含用FET作为放大元件的多级级联的放大器而构成的多级放大器,以及控制该多级放大器增益的增益控制电路。各级的所述放大器设有,从输入输出信号中除去比放大频带成分的上限值更高的高频成分的高频成分除去装置,以及从所述输入输出信号中除去比所述放大频带成分的下限值更低的低频成分的低频成分除去装置。
8.如权利要求7所述的FET带通放大器,其特征在于所述低频成分除去装置为截止频率设定在比所述下限值更低的值上的高通滤波器。
9.如权利要求7所述的FET带通放大器,其特征在于所述放大器是使两个所述FET差动工作的差动放大器;所述低频成分除去装置是将合成了各级的所述放大器的差动输出信号之低频成分的信号,以同相位输入至所述FET的反馈电路。
10.如权利要求7所述的FET带通放大器,其特征在于所述的高频成分除去装置是截止频率设定在比所述上限值更高的值上的低通滤波器。
11.如权利要求10所述的FET带通放大器,其特征在于用次级所述放大器中的晶体管的寄生电容充当所述低通滤波器中的电容器。
12.如权利要求7所述的FET带通放大器,其特征在于用所述p沟道FET作为所述放大器所包含的全部放大元件。
13.如权利要求7所述的FET带通放大器,其特征在于采用CMOS工艺或MOS工艺在半导体基片上一体形成构成部件。
14.如权利要求13所述的FET带通放大器,其特征在于在所述半导体基片上形成N型阱,在该N型阱上面形成所述构成部件的全部或一部分。
15.如权利要求14所述的FET带通放大器,其特征在于所述半导体基片上,在所述构成部件的周围形成保护环。
16.如权利要求15所述的FET带通放大器,其特征在于所述保护环形成于从所述半导体基片表面起至比所述N型阱更深的位置。
17.一种设有使包含在末级的所述放大器的输出信号中的比所述放大频带成分的下限值更低的低频成分,以反相状态反馈至初级的所述放大器的反馈电路的FET带通放大器,其中设有包含用FET作为放大元件的多级级联的放大器而构成的多级放大器,以及控制该多级放大器增益的增益控制电路;各级所述放大器设有从输入输出信号中除去比放大频带成分的上限值更高的高频成分的高频成分除去装置;用p沟道FET作为所述放大器的至少从初级至第n级的所述FET。
18.如权利要求17所述的FET带通放大器,其特征在于所述高频成分除去装置是截止频率设定在比所述上限值更高的值上的低通滤波器。
19.如权利要求18所述的FET带通放大器,其特征在于用次级的所述放大器中的FET的寄生电容充当所述低通滤波器中的电容器。
20`如权利要求17所述的FET带通放大器,其特征在于用所述p沟道FET作为所述放大器所包含的全部放大元件。
21.如权利要求17所述的FET带通放大器,其特征在于采用CMOS工艺或MOS工艺,在半导体基片上一体形成构成部件。
22.如权利要求21所述的FET带通放大器,其特征在于在所述半导体基片上形成N型阱,在该N型阱的上面形成所述构成部件的全部或一部分。
23.如权利要求22所述的FET带通放大器,其特征在于所述半导体基片上,在所述构成部件的周围形成保护环。
24.如权利要求23所述的FET带通放大器,其特征在于所述保护环形成于从所述半导体基片表面至比所述N型阱更深的位置。
25.一种用p沟道型的FET作为所述放大器的至少第m级以前的放大元件的FET带通放大器,其中设有包含以FET为放大元件的多级级联的放大器而构成的多级放大器和控制该多级放大器增益的增益控制电路。
26.如权利要求25所述的FET带通放大器,其特征在于用n沟道型的FET作为在第m+1级以后的所述放大器所包含的放大元件。
27.如权利要求26所述的FET带通放大器,其特征在于将第m级以前的所述放大器中的FET的沟道长L和沟道宽W设定在比第m+1级以后的所述放大器中的FET的沟道长L和沟道宽W更大的值上。
28.如权利要求25所述的FET带通放大器,其特征在于当着眼于作为所述放大元件在多级连接的所述多个放大器中包含的所述FET时,把设于前级的所述放大器中的所述FET的沟道长L和沟涎宽W设定在比设于后级的所述放大器中的所述FET的沟道长L和沟涎宽W更大的值上。
29.如权利要求25所述的FET带通放大器,其特征在于当着眼于作为所述放大元件在多级连接的所述多个放大器中包含的所述FET时,设定各所述FET的沟道长L和沟涎宽W,以使由该FET产生的噪声成分比该FET的输入信号所含的噪声成分更小。
30.如权利要求25所述的FET带通放大器,其特征在于采用CMOS工艺或MOS工艺在半导体基片上一体形成构成部件。
31.如权利要求30所述的FET带通放大器,其特征在于在所述半导体基片上形成N型阱,在该N型阱的上面形成所述构成部件的全部或一部分。
32.如权利要求31所述的FET带通放大器,其特征在于所述半导体基片上,在所述构成部件的周围形成保护环。
33.如权利要求32所述的FET带通放大器,其特征在于所述保护环形成于从所述半导体基片表面至比所述N型阱更深的位置。
全文摘要
本发明的目的是提供可以降低增益控制时的残留噪声的FET带通放大器。在AM(调幅)收信机中所含的FET频带放大器5设有如图示的5级放大器11-15和插入在它们中间的BPF(带通滤波器)16以及AGC(自动增益控制)电路8。BPF 16在通过比FET带通放大器全部放大频带更宽的频带成分的同时,通过除去从第3级放大器输出的信号中的低频成分来降低1/f噪声,通过除去高频成分来降低热噪声。因而,从末级放大器15输出的信号中所含的增益控制时的残留噪声就得到了降低。
文档编号H03F3/45GK1461519SQ02801150
公开日2003年12月10日 申请日期2002年2月21日 优先权日2001年2月22日
发明者宫城弘 申请人:新泻精密株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1