一种数字预失真功率放大器及其处理信号的方法

文档序号:7525422阅读:171来源:国知局
专利名称:一种数字预失真功率放大器及其处理信号的方法
技术领域
本发明涉及移动通信系统中功率放大器领域,尤其涉及一种数字预失 真功率放大器及其处理信号的方法。
背景技术
随着3G网络的大规模建设,为了降低CAPEX (Capital Expenditure, 资本性投资)和OPEX (Operating Expense,运营成本),功率放大器的效 率越来越成为运营商关注的焦点。可以提高功率放大器效率的技术常见的 有Doherty 4支术、包络跟踪技术、包络消除再生纟支术、自适应偏置技术、 峰值减少技术等。高效率功率放大器不仅能够为运营商节省电费,还能节 省电源等配套设施的投资,而且由于生产工艺的简化,降低了整机散热的 要求,增加设备稳定性,网络性能更好。
Doherty技术是目前提高功率放大器效率的一种常用技术,如图1是现 有技术中采用Doherty技术的数字预失真功率放大器的原理图,其包括数 字预失真单元、数字预失真自适应控制器、数模转换单元、上变频单元、 功分器、第一波长延迟单元、峰值放大器、第二波长延迟单元、耦合器、 载波放大器、下变频单元和模数转换单元,数字预失真单元的输入端与基 带信号接收端连接,输出端依次通过数模转换单元、上变频单元与功分器 的输入端连接,功分器的其中一个输出端依次通过第一波长延迟单元、峰 值放大器与耦合器的输入端连接,功分器的另一个输出端依次通过载波放 大器、第二波长延迟单元与峰值放大器和耦合器的输入端之间连接,耦合 器的一个输出端通过下变频单元、模数转换单元和数字预失真自适应控制 器的 一个输入端连接,数字预失真自适应控制器的另 一个输入端与基带信 号接收端连接,数字预失真自适应控制器的输出端与所述数字预失真单元的控制端连接;
基带信号接收端用于接收输入的基带信号,输入的基带信号经过数字 预失真单元的预失真处理后经过数模转换单元的转换及上变频单元的上变 频变换后变为射频信号输出到功分器,功分器将该射频信号分为两路,其
中一路经过第一波长延迟单元的1/4波长延迟后输出到峰值放大器,另外 一路经过载波放大器的放大、第二波长延迟单元的1/4波长延迟后与峰值
放大器放大后的信号耦合输出到耦合器,耦合器将一路信号输出,将另外 一路信号输出到下变频单元进行下变频处理,模数转换单元将下变频处理 后的信号转换为反馈基带信号输出到数字预失真自适应控制器,数字预失 真自适应控制器比较输入的基带信号与反馈基带信号,输出预失真参数到 预失真处理单元,预失真处理单元根据预失真参数对输入的基带信号进行 预失真处理,通过比较反馈基带信号与输入的基带信号来达到自适应控制 的目的。
载波放大器和峰值放大器都能设计成以最佳的效率传送最大输出功率
到负载。载波放大器是常规的AB或B类放大器,实际工作中可以通过设置 栅压2值大小来控制其工作状态。峰值放大器只有在输入射频信号功率超 过某一最小门卩艮值时才放大信号,实际工作中常常通过设置栅栏1值大小 使其工作在类似C类状态。
峰值放大器的栅压1值是根据射频信号的平均功率来设定一个固定值, 以保证峰值放大器输出的功率最大,从而提高功率放大器输出的功效。由 于输入的基带信号的包络是连续变化的,而峰值放大器的栅压1值是固定 的,则不能随着输入基带信号的包络的变化来实时设置峰值放大器的工作 状态,导致数字预失真功率放大器的输出功效比较低,限制了数字预失真 功率放大器功放效率的提高
发明内容
本发明提供了一种数字预失真功率放大器及其处理信号的方法,其能 提高峰值放大器的功放效率,从而提高数字预失真功率放大器的功放效率。
本发明的技术方案是 一种数字预失真功率放大器,包括数字预失真 单元、数字预失真自适应控制器、第一数模转换单元、上变频单元、功分 器、第一波长延迟单元、峰值放大器、第二波长延迟单元、耦合器、载波 放大器、第一下变频单元和第一模数转换单元;
所述数字预失真单元的输入端与基带信号接收端连接,输出端依次通 过所述第一数模转换单元、上变频单元与所述功分器的输入端连接,所述 功分器的其中一个输出端依次通过所述第一波长延迟单元、峰值放大器与 所述耦合器的输入端连接,所述功分器的另一个输出端依次通过所述载波 放大器、第二波长延迟单元连接在所述峰值放大器和耦合器的输入端之间, 所述耦合器的一个输出端依次通过所述第一下变频单元、第一^t数转换单 元和所述数字预失真自适应控制器的一个输入端连接,所述数字预失真自 适应控制器的另一个输入端与所述基带信号接收端连接,所述数字预失真 自适应控制器的输出端与所述数字预失真单元的控制端连接;
还包括包络4是取单元和第一信号处理单元,所述包络提取单元的一端 与所述基带信号接收端连接,另 一端通过所述第 一信号处理单元与所述峰 值放大器的栅极端连接;
所述包络提取单元用于提取输入的基带信号的包络信号,并将所述包 络信号输出到所述第一信号处理单元,所述第一信号处理单元将所述包络 信号处理为所述峰值放大器工作的栅压值。
一种数字预失真功率放大器处理信号的方法,包括
从基带信号接收端接收输入的基带信号,对该输入的基带信号进行预 失真处理,再将预失真处理后的信号数才莫转换、上变频处理为射频信号;
将所述射频信号分为第一路射频信号和第二路射频信号,对第一路射频信号进行第一 1/4波长延迟处理后输出到峰值放大器进行放大处理;载波放大器对第二路射频信号进行放大处理,再对载波放大器放大处理后的信号进行第二 1/4波长延迟;
将所述峰值放大器放大处理后的信号与所述第二 1/4波长延迟后的信号耦合后输出;
从所述耦合后输出的信号中提取一部分反馈信号,将所述反馈信号下变频、模数转换为反馈基带信号;比较所述反馈基带信号和所述输入的基带信号,根据比较结果输出预失真参数,根据该预失真参数对输入的基带信号进行预失真处理;
从所述输入的基带信号提取包络信号,将所述包络信号处理为所述峰值放大器工作的第一栅压值,所述峰值放大器根据所述第一栅压值对所述第一 1/4波长延迟后的信号进行放大处理。
本发明的数字预失真功率放大器及其处理信号的方法,所述数字预失真功率放大器通过包络提取单元提取输入的基带信号的包络信号,第一信号处理单元将该包络信号处理为峰值放大器工作的栅压值,进而可以根据包络信号的变化来设置峰值放大器的栅压值,使峰值放大器实时的工作在高效率状态,从而提高本发明数字预失真功率放大器输出的功放效率。


图l是现有技术中数字预失真功率放大器的结构原理框图;图2是本发明数字预失真功率放大器在一实施例中的结构原理框图;图3是本发明数字预失真功率放大器在另一实施例中的结构原理框4是本发明数字预失真功率放大器在另一实施例中的结构原理框5是本发明数字预失真功率放大器在另一实施例中的结构原理框6是本发明数字预失真功率放大器在另 一实施例中的结构原理框图; 图7是本发明数字预失真功率放大器在另 一实施例中的结构原理框图; 图8是本发明数字预失真功率放大器在另一实施例中的结构原理框图; 图9是本发明数字预失真功率放大器在另 一实施例中的结构原理框图; 图10是本发明数字预失真功率放大器在又一实施例中的结构原理框
图11是本发明数字预失真功率放大器在又一实施例中的结构原理框
图12是本发明数字预失真功率放大器处理信号的方法在一实施例中的 流程框图13是本发明数字预失真功率放大器处理信号的方法在又一实施例中 的流程框图14是本发明数字预失真功率放大器处理信号的方法在另一实施例中 的流程框图。
具体实施例方式
本发明的数字预失真功率放大器及其处理信号的方法,可以提取输入 的基带信号的包络信号,将该包络信号处理为峰值放大器工作的栅压值, 则本发明可以根据包络信号的变化来设定峰值放大器的栅压值,以使峰值 放大器根据包络信号的变化实时工作在高效率功率放大状态,从而提高本 发明数字预失真功率放大器输出的功放效率。
下面结合附图对本发明的具体实施例做一详细的阐述。
本发明的数字预失真功率放大器,如图2,包括数字预失真单元、数字 预失真自适应控制器、第一数模转换单元、上变频单元、功分器、第一波
12长延迟单元、峰值放大器、第二波长延迟单元、耦合器、载波放大器、第
一下变频单元和第一^^莫数转换单元;
所述数字预失真单元的输入端与基带信号接收端连接,输出端依次通 过所述第一数模转换单元、上变频单元与所述功分器的输入端连接,所述 功分器的其中一个输出端依次通过所述第一波长延迟单元、峰值;故大器与 所述耦合器的输入端连接,所述功分器的另一个输出端依次通过所述载波 放大器、第二波长延迟单元连接在所迷峰值放大器和耦合器的输入端之间, 所述耦合器的一个输出端依次通过所述第一下变频单元、第一模数转换单 元和所述数字预失真自适应控制器的一个输入端连接,所述数字预失真自 适应控制器的另一个输入端与所述基带信号接收端连接,所述数字预失真 自适应控制器的输出端与所述数字预失真单元的控制端连接;
还包括包络提取单元和第一信号处理单元,所述包络提取单元的一端 与所述基带信号接收端连接,另一端通过所述第一信号处理单元与所述峰 值放大器的栅极端连接;
所述包络提取单元用于提取输入的基带信号的包络信号,并将所述包 络信号输出到所述第一信号处理单元,所述第一信号处理单元将所述包络 信号处理为所述峰值放大器工作的栅压值。
这样即可根据基带信号的包络变化来设置峰值放大器的栅压值,保证 了峰值放大器可以根据包络信号的变化实时工作在高效率状态。
上变频单元和第一下变频单元在具体实施时,可以分別包括混频器和 本振,混频器根据本振输出的频率对输入的信号进行混频处理。
在一较优实施例中,如图5,本发明还包括第二信号处理单元,其一端 与所述包络提取单元的输出端连接,另 一端与所述载波放大器的栅极端连 接,用于将所述包络信号处理为所述载波放大器工作的栅压值。使得载波 放大器在保持增益不变的情况下,其放大输出的信号的线性化根据包络信号变化实时达到最优,这样可以提高载波放大器的输出信号线性化,进一步的提高了本发明数字预失真功率放大器的效率。
在一较优实施例中,如图3,所述第一信号处理单元包括第一查找表单元、第一^j"压值处理单元,所述第一查找表单元的^T入端与所述包纟各^是取单元的输出端连接,所述第一查找表单元的输出端通过所述第一斥册压值处
理单元与所述峰值放大器的栅极端连接;
所述第一查找表单元接收所述包络信号,根据其预先存储的对应表依次输出各个数字栅压值,该各个数字栅压值经过所述第一栅压值处理单元的数模转换、放大处理后转换为所述峰值放大器工作的栅压值;所述第一查找表单元预先存储的对应表包括与包络信号值对应的控制所述峰值放大器高效率工作的数字栅压值。
不同的包络信号值,峰值放大器高效工作的栅压值也不同,总体趋势是包络信号值变小,峰值放大器高效工作的栅压值也变小;包络信号值越大,峰值放大器高效工作的栅压值也变大,保证在峰值放大器增益不变的情况下,输出效率最高。这样峰值放大器的栅压值不是固定的,而是和输入的基带信号的包络有关,这样可以通过控制栅压值的变化来使峰值放大器实时工作在高效率状态。由此可见,峰值放大器随着输入基带信号的包络变化而实时工作在高效率状态,提高了峰值放大器的效率。
在一较优实施例中,如图4,所述第一信号处理单元可以包括第一包络滤波单元和第一线性放大单元,所述第一包络滤波单元的输入端与所述包络提取单元的输出端连接,所述第一包络滤波单元的输出端通过所述第一
线性放大单元与所述峰值放大器的栅极端连接;
所述第一包络滤波单元接收所述包络信号,对其进行滤波处理后输出到所述第一线性放大单元,所述第一线性放大单元根据所述峰值放大器的栅压值参数将所述滤波处理后的包络信号放大处理为所述峰值放大器工作的栅压值。该第一线性放大单元是根据峰值放大器的栅压值参数范围来调整放大倍数,以使所述峰值放大器的输出功效根据输入基带信号包络的变化实时达到最高,这样可以提高峰值放大器的输出功效。
在一较优实施例中,如图6,所述第二信号处理单元可以包括第二查找
表单元、第二栅压值处理单元,所述第二查找表单元的输入端与所述包络提取单元的输出端连接,所述第二查找表单元的输出端通过所述第二栅压
值处理单元与所述载波放大器的栅极端连接;
所述第二查找表单元接收所述包络信号,根据其预先存储的对应表依次输出各个数字栅压值,该各个数字栅压值经过所述第二栅压值处理单元的数模转换、放大处理后转换为所述峰值放大器工作的栅压值;所述第二查找表单元预先存储的对应表包括与包络信号值对应的控制所述载波放大器高效率工作的数字栅压值。
不同的包络信号值,载波放大器高效工作的栅压值也不同,总体趋势是包络信号值变小,载波放大器高效工作的栅压值也变小;包络信号值越大,载波放大器高效工作的栅压值也变大,保证在载波放大器增益不变的情况下,输出效率最高。这样载波放大器的栅压值不是固定的,而是和输入的基带信号的包络有关,这样可以通过控制栅压值的变化来使载波放大器实时工作在高效率状态。由此可见,载波放大器随着输入基带信号的包络变化而实时工作在高效率状态,提高了载波放大器的效率。
在一较优实施例中,如图7,所述第二信号处理单元可以包括第二包络滤波单元和第二线性放大单元,所述第二包络滤波单元的输入端与所述包络提取单元的输出端连接,所述第二包络滤波单元的输出端通过所述第二线性放大单元与所述载波放大器的栅极端连接;
所述第二包络滤波单元接收所述包络信号,对其进行滤波处理后输出到所述第二线性放大单元,所述第二线性放大单元根据所述载波放大器的栅压值参数将所述滤波处理后的包络信号放大处理为所述载波放大器工作 的栅压值。所述第二线性放大单元的放大倍数是根据载波放大器的栅压值 参数来设置,保证在载波放大器保持增益不变的情况下,其放大|#出的信 号的线性化随着输入基带信号包络的变化实时达到最优。这样可以提高载 波放大器的输出信号线性化。
在一较优实施例中,本发明的数字预失真功率放大器还包括时延调整 单元,如图11 (在该图中第一信号处理单元包括第一查找表单元和第一栅 压值处理单元,第二信号处理单元包括第二查找表单元和第二栅压^f直处理 单元,时延调整单元连接在所述包络提取单元的输出端与所述第 一查找表 单元及第二查找表单元的输入端之间),连接在所述包络提取单元的输出端 与所述第一信号处理单元及所述第二信号处理单元的输入端之间,或者连 接在所述包络提取单元的输出端与所述第一信号处理单元的输入端之间, 或者连接在所述包络提取单元的输出端和所述第二信号处理单元的输入端 之间,用于对所述包络信号进行延时处理,以使所述输入的基带信号经过
所述包络4是取单元、所述第一信号处理单元处理后输出到所述峰^直;故大器 的栅极端的时间和所述输入的基带信号经过所述预失真处理单元、第一数 模转换单元、上变频单元、功分器到峰值放大器的时间同步,以使峰值放 大器的工作状态与输入的基带信号的包络变化同步,这样峰值;改大器可以 工作在高效率状态下,提高峰值放大器的工作效率;或者也可以使所述输 入的基带信号经过所述包络提取单元、所述第一信号处理单元处理后输出 到所述载波放大器的栅极端的时间和所述输入的基带信号经过所述预失真 处理单元、第一数;溪转换单元、上变频单元、功分器到载波放大器的时间 同步,以使载波放大器的工作状态与输入的基带信号的包络变化同步,提 高载波^L大器工作的效率。
在一较优实施例中,如图8,本发明还包括第一滤波器和第二滤波器,所述第一滤波器连接在所述上变频单元的输出端与所述功分器的输入端之 间,所述第二滤波器连接在所述第一下变频单元的输出端与所迷第一模数 转换单元的输入端之间。第一滤波器用于滤除上变频单元混频时的干扰信
号,以输出纯净的射频信号到功分器;第二滤波器用于滤除第一下变频单
元混频时的干扰信号,以输出比较纯净的模拟信号输出到第一模数转换单元。
在一较优实施例中,为了使本发明的数字预失真功率;^文大器也能对射 频信号进行处理,提高本发明数字预失真功率放大器的应用范围,以使本 发明可以应用到直放站、塔放等接口为射频信号的设备中。如图9,本发明 还可以包括第二下变频单元、第二模数转换单元、数字下变频单元;所述 第二下变频单元的一端与射频信号接收端连接,另一端依次通过第二模数 转换单元、数字下变频单元与所迷基带信号接收端连接;
所述第二下变频单元将输入的射频信号下变频到中频信号,再经过所 述模数转换单元的模数转换、及数字下变频单元的下变频处理后转换为零 中频数字信号输出到所述基带信号接收端。其中,输入的射频信号可以是 WC腿、CDMA/CDMA 2000、 TD-SC腿、WiMax、 GSM、 LTE等现有制式不同频 段的射频信号。
在一较优实施例中,如图10,本发明还包括第三滤波器,连接在所述 第二下变频单元的输出端与所述第二模数转换单元的输入端之间。以滤除 所述第二下变频单元混频时的千扰信号,输出比较纯净的模拟信号到第二 模数转换单元。另外本发明还可以包括削峰单元,连接在所述数字下变频 单元与所述基带信号接收端之间,用于对所述零中频数字信号的峰均比进 行削峰处理。
所述第一栅压值处理单元,在一实施例中,可以包括第二数才莫转换单 元、第一包络滤波及线性放大单元,所述第二数模转换单元的输入端与所 述第一查找表单元的输出端连接,所述第二数才莫转换单元的输出端通过所
17述第 一 包络滤波及线性放大单元与所述峰值放大器的栅极端连接;
所述第二数模转换单元将依次输入的各个数字栅压值转换为才莫拟栅压 值,再经过所述第一包络滤波及线性放大单元的滤波处理、线性;故大处理 后输出到所述峰值放大器的栅极端。该第一包络滤波及线性放大单元根据 峰值放大器的栅压值参数范围来调整放大倍数,以使所述峰值放大器的输 出功效根据输入基带信号包络的变化实时达到最高,这样可以提高峰值放 大器的输出功效。
所迷第二栅压值处理单元,在一实施例中,可以包括第三数才莫转换单 元、第二包络滤波及线性放大单元,所述第三数模转换单元的输入端与所 述第二查找表单元的输出端连接,所述第三数^t转换单元的输出端通过所 述第二包络滤波及线性放大单元与所述载波放大器的栅极端连接;
所述第三数模转换单元将依次输入的各个数字栅压值转换为才莫拟栅压 值,再经过所述第二包络滤波及线性放大单元的滤波处理、线性;改大处理 后输出到所述载波放大器的栅极端。所述第二包络滤波及线性放大单元的 放大倍数是根据载波放大器的栅压值参数来设置,保证在载波放大器保持 增益不变的情况下,其放大输出的信号的线性化随着输入基带信号包络的 变化实时达到最优。这样可以提高载波放大器的输出信号线性化。
下面结合图11对本发明数字预失真功率放大器在一具体实施例中对输 入的射频信号进行处理的步骤做一详细的阐述。
射频信号经过天线接收后,进入数字预失真功率^:大器的射频信号接 收端,这些射频信号可以是WCDMA、 CDMA/CDMA 2000、 TD-SCDMA、 WiMax、 GSM、 LTE等现有制式不同频段的射频信号;
射频信号接收端接收的射频信号经过第二下变频单元中的混频器和本 振1和共同作用后,输出一个中频信号,该中频信号的频率可以根据实际工作情况而定,该实施例中设计该频率为92.16MHz;
第二下变频单元输出的频率为92. 16MHz的中频信号,采用第三滤波器 滤除掉其镜像干扰,从而输出比较纯净的中频信号。具体实现时,第三滤 波器可以采用L、 C离散器件设计或者采用专用器件设计;
对第三滤波器输出的比较纯净的中频信号,基于软件无线电的理论, 选用第二模数转换单元,确定其采样率,该实施例中采样率定为 122. 88MSPS, 4巴92. 16MHz的中频信号,经过才莫数转换后变为数字4言号;
第二模数转换单元输出的数字信号进入数字下变频单元,数字下变频 单元确定数字下变频单元的数控本振值为30. 72MHz,并且采用2倍抽取降 数据速率处理,输出数据速率为61.44MSPS的零中频凄t字信号。该部分具 体实现可以采用专用的数字下变频芯片设计或者采用现场可编程逻辑器件 (FPGA)实现;
数字下变频单元输出的零中频数据速率为61.44MSPS的数字信号,进 入削峰单元,变为峰均比比较低的零中频数字基带信号,以利于后级 Doherty功率i欠大器的实现。该部分具体实现时,可以采用专用的波峰减小 芯片,如TI/>司的GC1115、 PMC7^司PM7819、 OPTICHRON/>司的OP5000 或者采用FPGA实现该功能;
削峰单元输出的零中频数字信号进入数字预失真单元,它由数字预失 真自适应控制器控制完成对输入零中频数字信号的预矫正,同时在该单元 需要进行2X内插操作,使预矫正后的信号以122. 88MSPS数据速率输出到 下一级。数字预失真单元具体实现可以采用专用芯片,如PMC公司的PM7810、 PM7815、 PM7820等、TI公司GC5322、 OPTICHRON/>司的0P4400,也可以采 用FPGA实现;
预失真处理后的零中频数字信号,进入第一数模转换单元,该单元根 据输入数据的速率,选择时钟速率,从而完成数字信号到模拟信号的转换,输出零中频的模拟1/Q信号。具体实现中,采用122. 88MSPS时钟速率,该 单元可以选择ADI公司的AD9788、 AD9779或者TI />司的DAC5687、 DAC5688 等;
第一数^:莫转换单元输出的零中频模拟I、 Q信号,进入上变频单元,经 过上变频单元中的混频器和本振2共同作用后,转换为射频信号。具体实 现时,上变频单元可以采用专用的I/Q正交调制器来实现,如ADI《^司的 ADL537X系列、TI公司的TRF3703, RFMD公司的RF2483等;
上变频单元输出的射频信号经过第一滤波器后,滤掉射频信号的二次 谐波,变为比较纯净的射频信号。具体实现时,第一滤波器可以采用L、 C 离散器件设计或者采用专用器件设计;
第一滤波器输出的比较纯净的射频信号,经过功分器,分为两路功率 相等、相位一致的射频信号。具体实现时,功分器可以采用微带线设计;
两路功率相等的射频信号中的其中一路信号,经过第一波长延迟单元 的1/4波长延迟后,变为延迟后的射频信号。具体实现时,第一波长延迟 性可以用微带线设计;
第 一 波长延迟单元输出的射频信号进入峰值放大器进行放大,变为功 率放大后的射频信号。具体实现时,该峰值放大器可以采用LDMOS、 GaN等 功放管器件;
两路功率相等的射频信号中的另一路信号,直接进入载波放大器进行 放大,变为功率放大后的射频信号;
经过载波放大器放大后的射频信号,经过第二波长延迟单元的I/4波 长处理后,和峰值放大器放大后的射频信号,在射频输出端耦合一起后输 出。具体实现时,第二波长延迟单元采用微带线设计;
削峰单元输出的零中频数字基带信号,进入包络提取单元,计算出数 字信号的包络信号。具体实现时,可以采用FPGA在基带域,基于公式鮮" 2 ,其中AiVF表示提取的包络信号,/、 2分别表示基带信号 的同相和正交信号;
包络提取单元输出的包络信号,经过时延调整单元,使该包络信号变 为时间相对滞后的包l备信号,具体实现中,时延调整单元可以在FPGA内部 实现;
所述第一查找表单元接收时延调整单元输出的包络信号,根据其预先 存储的对应表依次输出各个数字栅压值,所述第一查找表单元预先存储的 对应表包括与包络信号值对应的控制所述峰值放大器高效率工作的栅压 值;
第二查找表单元接收时延调整单元输出的包络信号,根据其预先存储 的对应表依次输出各个数字栅压值,所述第二查找表单元预先存储的对应 表包括与包络信号值对应的控制所述载波放大器高效率工作的栅压值;
第 一查找表单元输出的数字栅压值经过第 一栅压值处理单元中的第二 数模转换单元,完成数字信号到模拟信号的转换;该第二数模转换单元采 用122. 88MSPS时钟速率,选用ADI />司的AD9767;
第二查找表单元输出的数字栅压值经过第二栅压值处理单元中的第三 数模转换单元,完成数字信号到模拟信号的转换;该第三数模转换单元也 采用122. 8眼SPS时钟速率,选用ADI公司的AD9767;
第二数模转换单元输出的模拟栅压值,经过第一栅压值处理单元中的 第一包络滤波及线性;改大单元,滤除高频干扰信号,并;^丈大处理后变为适 合峰值放大器正常工作的栅压值。具体实现时,该第一包络滤波及线性放 大单元是由高速大时带宽积运放器件为核心器件,配上外围的L、 C器件实 现,这里高速大时带宽积运放器件选用ADI公司的AD829;
第三数模转换单元输出的模拟栅压值,经过第二栅压值处理单元中的 第二包络滤波及线性放大单元,滤除高频干扰信号,并放大后变为适合载波放大器正常工作的栅压值。具体实现时,该第二包络滤波及线性放大单
元是由高速大时带宽积运放器件为核心器件,配上外围的L、 C器件实现, 这里高速大时带宽积运》支器件选用ADI公司的AD829;
耦合器将载波放大器和峰值放大器放大输出的射频信号耦合在一起输 出,并提取一部分信号作为反馈射频信号。具体实现时,该耦合器采用一 般3dB电桥或者微带耦合即可,具体耦合值的大小根据功放输出的功率而
定;
耦合器输出的反馈射频信号,经过第 一下变频单元中的混频器和本振 3,共同作用后,使反馈射频信号转换为中频频率为92. 16MHz的信号。
第一下变频单元输出的频率为92. 16MHz的中频信号,经过第二滤波器, 滤除镜像干扰,变为比较纯净的中频信号。具体实现时,第二滤波器可以 采用L、 C器件设计或者采用专用的滤波器器件实现;
对第二滤波器输出的中频信号,基于软件无线电理论,第一模数转换 单元对其采样,变为数字信号,具体实现时,第一才莫数转换单元采样速率 定为122. 88MSPS,可以采用ADI公司的AD80142、或TI公司的ADS5517等;
第一才莫数转换单元输出的速率为122. 88MSPS的数字信号,进入数字预 失真自适应控制器后,由数字预失真自适应控制器,基于反馈的数字信号 和步骤6中的数字信号之间差值,调整预失真参数,更新数字预失真单元 的预失真参数,实现功率放大器的自适应预失真处理功能;
由于峰值放大器栅压值、载波放大器栅压值和输入信号的包络有关, 而本发明中的数字预失真功率放大器实际工作时,射频输入信号的包络实 时改变,导致峰值放大器栅压值和栽波放大器栅压值也实时改变,从而使 本发明中的数字预失真功率放大器在提高效率的同时,也大幅度提高了数 字预失真功率;^t大器的线性指标。
为了进一步提高在该具体实施例中的数字预失真功率放大器的功放和
22线性化,具体实施中,l.保证本振l、第一模数转换单元、第二模数转换单
元、本振2、第一凄史;漠转换单元,本振3等6部分的工作时钟来自同一个时 钟源;2.需要预先设定第一查找表单元和第二查找表单元中的输入信号包 络和数字栅压值之间的关系,第一查找表单元确定原则是在每一个特定的 输入信号包络值处,通过调整峰值放大器栅压值,使数字预失真功率放大 器能够在保持增益基本不变的情况下,效率达到最高。第二查找表单元确 定原则是在每一个特定的输入信号包络值处通过调整载波放大器栅压值, 使数字预失真功率^:大器能够在保持效率最高的情况下,线性达到最优; 3.功分器输出的两路射频信号,需要根据实际情况,调整第一波长延迟单 元和第二波长延迟单元,使这两路射频信号在射频输出端耦合在一起时, 相位相等;4.需要调试时延调整单元,使零中频数字信号经过数字预失真 单元、第一数^t转换单元、上变频单元、第一滤波器、功分器、第一波长 延迟单元到达峰值放大器的时间和经过包络提取单元、时延调整单元、第 一查找表单元、第二数模转换单元、第一包络滤波及线性放大单元到达峰 值放大器的栅极端的时间基本一致,以使这两路信号同步。同时,也要保 证零中频数字信号经过数字预失真单元、第一数模转换单元、上变频单元、 第一滤波器、功分器到达载波放大器的时间和经过包络提取单元、时延调 整单元、第二查找表单元、第三数模转换单元、第二包络滤波及线性放大 单元的时间基本一致,以使这两路信号同步。
另外,由数字下变频单元、削峰单元、包络提取单元、第一查找表单 元、第二查找表单元、时延调整单元、数字预失真单元和数字预失真自适 应控制器共同组成的数字信号处理部分,具体实施时,可以采用一块FPGA 芯片实现,或者数字下变频单元、削峰单元、包络提取单元、第一查找表 单元、第二查找表单元、时延调整单元、数字预失真单元采用一块FPGA实 现,数字预失真自适应控制器采用一块DSP实现。本发明数字预失真功率放大器处理信号的方法,如图12,可以包括
5101、 从基带信号接收端接收输入的基带信号;
5102、 对该输入的基带信号进行预失真处理;
5103、 将预失真处理后的信号数模转换、上变频处理为射频信号;
5104、 将所述射频信号分为第一路射频信号和第二路射频信号;
5105、 对第一路射频信号进行第一 1/4波长延迟处理后输出到峰值放 大器;
5106、 峰值放大器对第一 1/4波长延迟处理后的信号进行放大处理;
5107、 载波放大器对第二路射频信号进行放大处理;
5108、 对载波放大器放大处理后的信号进行第二 1/4波长延迟处理;
5109、 将所述峰值放大器放大处理后的信号与所述第二 1/4波长延迟 处理后的信号耦合后输出;
5110、 从所述耦合后输出的信号中耦合一部分反馈信号,将所述反馈 信号下变频、模数转换为反馈基带信号;
5111、 比较所述反馈基带信号和所述输入的基带信号,根据比较结果 输出预失真参数;步骤S102是根据此时输出的预失真参数对输入的基带信 号进行预失真处理。这样通过不断的比较输入的基带信号与反馈基带信号, 使所述耦合后输出的信号的失真度降到最低。
5112、 从所述输入的基带信号提取包络信号;
5113、 将所述包络信号处理为所迷峰值放大器工作的第一栅压值;步 骤S106、峰值放大器是4艮据第一栅压值对第一 1/4波长延迟处理后的信号 进行放大处理。这样即可根据基带信号的包络变化来设置峰值放大器的栅 压值,保证了峰值放大器可以根据包络信号的变化实时工作在高效率状态。在一实施例中,本发明数字预失真功率放大器处理信号的方法,如图
13,还包括步骤S114、将所述包络信号处理为所述载波;改大器工作的第二 栅压值;步骤S107、载波放大器是根据输出的第二栅压值对笫二路射频信 号进行放大处理。这样即可根据基带信号的包络变化来设置载波放大器的 栅压值,保证了栽波放大器可以根据包络信号的变化实时工作在高效率状态。
其中,步骤S113、将所述包络信号处理为所述峰值;改大器工作的第一 栅压值,具体可以为
根据预先存储的第 一对应表依次输出所述包络信号对应的各个数字栅 压值,将该各个数字栅压值数模转换、放大处理为所述峰值放大器工作的 第一栅压值;所述第一对应表包括与包络信号值对应的控制所述峰值放大 器高效率工作的数字栅压值。
不同的包络信号值,峰值放大器高效工作的栅压值也不同,总体趋势 是包络信号值变小,峰值放大器高效工作的栅压值也变小;包络信号值越 大,峰值放大器高效工作的栅压值也变大,保证在峰值放大器增益不变的 情况下,输出效率最高。这样峰值放大器的栅压值不是固定的,而是和输 入的基带信号的包络有关,这样可以通过实时控制栅压值的变化来使峰值 放大器实时工作在高效率状态。由此可见,峰值;改大器随着输入基带信号 的包络变化而实时工作在高效率状态,提高了峰值放大器的效率。
步骤S113、将所述包络信号处理为所述峰值放大器工作的第一栅压值, 具体还可以为
对所述包络信号进行滤波处理,再根据所迷峰值放大器的栅压值参数 将滤波处理后的信号放大处理为所述峰值放大器工作的第一栅压值。
上述放大处理的倍数根据峰值放大器的栅压值参数范围来调整,以使 所述峰值放大器的输出功效根据输入基带信号包络的变化实时达到最高,这样可以提高峰值放大器的输出功效。
在一较优实施例中,步骤S114、将所述包络信号处理为所述载波;汰大 器工作的第二栅压值,具体可以为
根据预先存储的第二对应表依次输出所述包络信号对应的各个数字栅 压值,将该各个数字栅压值数模转换、放大处理为所述载波放大器工作的 第二栅压值;所述第二对应表包括与包络信号值对应的控制所述载波放大 器高效率工作的数字栅压值。
不同的包络信号值,载波放大器高效工作的栅压值也不同,总体趋势 是包络信号值变小,载波放大器高效工作的栅压值也变小;包络信号值越 大,载波放大器高效工作的栅压值也变大,保证在载波放大器增益不变的 情况下,输出效率最高。这样载波放大器的栅压值不是固定的,而是和输 入的基带信号的包络有关,这样可以通过实时控制栅压值的变化来使载波 放大器实时工作在高效率状态。由此可见,载波放大器随着输入基带信号 的包络变化而实时工作在高效率状态,提高了载波;改大器的效率。
步骤S114、将所述包络信号处理为所述载波放大器工作的第二栅压值, 具体还可以为
对所述包络信号进行滤波处理,再根据载波放大器的栅压值参数将滤 波处理后的信号》丈大处理为所述载波放大器工作的第二栅压值。
上述所述的放大处理倍数是根据载波放大器的栅压值参数来设置,保 证在载波放大器保持增益不变的情况下,其放大输出的信号的线性化随着 输入基带信号包络的变化达到实时最优。这样可以提高载波放大器的输出 信号线性化。
在一较优实施例中,在步骤S103和步骤S104之间,还包括步骤对 所述上变频处理后的射频信号进行滤波处理,以滤除上变频处理过程中的 干扰信号,以输出比较纯净的射频信号。在对所述反馈信号进行下变频处理之后,模数转换之前,还可以包括步骤对下变频处理后的信号进行滤 波处理,以滤除下变频处理过程中的干扰信号,输出比较纯净的模拟信号。
本发明数字预失真功率放大器处理信号的方法,如图14,在一较优实 施例中,还可以包才舌
从射频信号接收端接收输入的射频信号,将该输入的射频信号下变频、 模数转换、数字下变频处理为数字基带信号输出到所述基带信号接收端。
这样本发明的数字预失真功率放大器处理信号的方法可以处理射频信 号,提高了本发明的应用范围。
其中,在将所述数字基带信号输出到所述基带信号接收端之前,还可 以包括步骤对所述数字基带信号的峰均比进行削峰处理。
另外在对所述输入的基带信号进行下变频之后,模数转换之前,还可 以包括步骤对下变频处理后的信号进行滤波处理,以滤除下变频处理过 程中的干扰信号,输出比较纯净的模拟信号。
最后,在步骤S112和步骤S114之间,和/或步骤S112和步骤Sl"之 间,还可以包括步骤对所述包络信号进行延时处理,以使所述输入的基 带信号经过步骤S112、 S113的处理时间与所述输入的基带信号经过步骤 S102、 S103、 S104的处理时间同步,这样可以使峰值放大器和/载波放大器 的工作状态与输入的基带信号的包络变化同步,峰值放大器和/或载波放大 器可以实时工作在高效率状态下,提高峰值放大器和/或载波放大器的工作 效率。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任 何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含 在本发明的权利要求保护范围之内。
2权利要求
1、一种数字预失真功率放大器,包括数字预失真单元、数字预失真自适应控制器、第一数模转换单元、上变频单元、功分器、第一波长延迟单元、峰值放大器、第二波长延迟单元、耦合器、载波放大器、第一下变频单元和第一模数转换单元;所述数字预失真单元的输入端与基带信号接收端连接,输出端依次通过所述第一数模转换单元、上变频单元与所述功分器的输入端连接,所述功分器的其中一个输出端依次通过所述第一波长延迟单元、峰值放大器与所述耦合器的输入端连接,所述功分器的另一个输出端依次通过所述载波放大器、第二波长延迟单元连接在所述峰值放大器和耦合器的输入端之间,所述耦合器的一个输出端依次通过所述第一下变频单元、第一模数转换单元和所述数字预失真自适应控制器的一个输入端连接,所述数字预失真自适应控制器的另一个输入端与所述基带信号接收端连接,所述数字预失真自适应控制器的输出端与所述数字预失真单元的控制端连接;其特征在于还包括包络提取单元和第一信号处理单元,所述包络提取单元的一端与所述基带信号接收端连接,另一端通过所述第一信号处理单元与所述峰值放大器的栅极端连接;所述包络提取单元用于提取输入的基带信号的包络信号,并将所述包络信号输出到所述第一信号处理单元,所述第一信号处理单元将所述包络信号处理为所述峰值放大器工作的栅压值。
2、 根据权利要求l所述的数字预失真功率放大器,其特征在于所述第 一信号处理单元包括第一查找表单元、第一栅压值处理单元,所述第一查找 表单元的输入端与所述包络提取单元的输出端连接,所述第一查找表单元的 输出端通过所述第一栅压值处理单元与所述峰值放大器的栅极端连接;所述第一查找表单元接收所述包络信号,根据其预先存储的对应表依次 输出各个数字栅压值,该各个数字栅压值经过所述第一栅压值处理单元的数 模转换、放大处理后转换为所述峰值放大器工作的栅压值;所述第一查找表单元预先存储的对应表包括与包络信号值对应的控制所述峰值放大器高效率 工作的数字栅压值。
3、 根据权利要求1所述的数字预失真功率放大器,其特征在于所述第 一信号处理单元包括第一包络滤波单元和第一线性》文大单元,所述第一包络 滤波单元的输入端与所述包络提取单元的输出端连接,所迷第 一 包络滤波单 元的输出端通过所述第一线性放大单元与所述峰值放大器的栅极端连接;所述第一包络滤波单元接收所述包络信号,对其进行滤波处理后输出到 所述第一线性放大单元,所述第一线性放大单元根据所述峰值放大器的栅压 值参数将所述滤波处理后的包络信号放大处理为所述峰值放大器工作的栅压 值。
4、 根据权利要求1或2或3所述的数字预失真功率放大器,其特征在于 还包括第二信号处理单元,其一端与所述包络提取单元的输出端连接,另一 端与所述载波放大器的栅极端连接,用于将所述包络信号处理为所述载波放 大器工作的栅压值。
5、 根据权利要求4所述的数字预失真功率放大器,其特征在于所述第 二信号处理单元包括第二查找表单元、第二栅压值处理单元,所述第二查找 表单元的输入端与所述包络提取单元的输出端连接,所述第二查找表单元的 输出端通过所述第二栅压值处理单元与所述栽波放大器的栅极端连接;所述第二查找表单元接收所述包络信号,根据其预先存储的对应表依次 输出各个数字栅压值,该各个数字栅压值经过所述第二栅压值处理单元的数 模转换、放大处理后转换为所述峰值放大器工作的栅压值;所述第二查找表 单元预先存储的对应表包括与包络信号值对应的控制所述载波放大器高效率 工作的数字栅压值。
6、 根据权利要求4所述的数字预失真功率放大器,其特征在于所述第 二信号处理单元包括第二包络滤波单元和第二线性放大单元,所述第二包络 滤波单元的输入端与所述包络提取单元的输出端连接,所述第二包络滤波单元的输出端通过所述第二线性放大单元与所述载波放大器的栅极端连接;所述第二包络滤波单元接收所述包络信号,对其进行滤波处理后输出到 所述第二线性放大单元,所述第二线性放大单元根据所述载波放大器的栅压值参数将所述滤波处理后的包络信号放大处理为所述栽波^:大器工作的栅压值。
7、 根据权利要求4所述的数字预失真功率放大器,其特征在于还包括 时延调整单元,连接在所述包络提取单元的输出端与所述第一信号处理单元 的输入端之间,和/或连接在所述包络提取单元的输出端与所述第二信号处理 单元的输入端之间,用于对所述包络信号进行延时处理。
8、 根据权利要求1所述的数字预失真功率放大器,其特征在于还包括 第一滤波器和第二滤波器,所述第一滤波器连接在所述上变频单元的输出端 与所述功分器的输入端之间,所述第二滤波器连接在所述第一下变频单元的 输出端与所述第 一模数转换单元的输入端之间。
9、 根据权利要求1或2或3或8所述的数字预失真功率放大器,其特征 在于还包括第二下变频单元、第二模数转换单元、数字下变频单元;所述 笫二下变频单元的一端与射频信号接收端连接,另一端依次通过第二模数转 换单元、数字下变频单元与所述基带信号接收端连接;所述第二下变频单元将输入的射频信号下变频到中频信号,再经过所述 模数转换单元的模数转换、及数字下变频单元的数字下变频处理后转换为零 中频数字信号输出到所述基带信号接收端。
10、 根据权利要求9所述的数字预失真功率放大器,其特征在于还包 括削峰单元,连接在所述数字下变频单元与所述基带信号接收端之间,用于 对所述零中频数字信号的峰均比进行削峰处理。
11、 根据权利要求9所述的数字预失真功率放大器,其特征在于还包 括第三滤波器,连接在所述第二下变频单元的输出端与所述第二模数转换单元的llr入端之间。
12、 根据权利要求2所述的数字预失真功率放大器,其特征在于所述 第 一栅压值处理单元包括第二数模转换单元、第 一 包络滤波及线性;改大单元, 所述第二数模转换单元的输入端与所述第一查找表单元的输出端连接,所述 第二数模转换单元的输出端通过所述第 一 包络滤波及线性;故大单元与所述峰 值放大器的栅极端连接;所述第二数模转换单元将依次输入的各个数字栅压值转换为模拟栅压 值,该模拟栅压值经过所述第 一包络滤波及线性放大单元的滤波及线性放大 处理后输出到所述峰值》文大器的栅极端。
13、 根据权利要求5所述的数字预失真功率放大器,其特征在于所述 第二栅压值处理单元包括第三数模转换单元、第二包络滤波及线性放大单元, 所述第三数模转换单元的输入端与所述第二查找表单元的输出端连接,所述 第三数模转换单元的输出端通过所述第二包络滤波及线性放大单元与所述载 波放大器的栅极端连接;所述第三数模转换单元将依次输入的各个数字栅压值转换为模拟栅压 值,该模拟栅压值再经过所述第二包络滤波及线性放大单元的滤波及线性放 大处理后输出到所述载波;改大器的栅极端。
14、 一种数字预失真功率放大器处理信号的方法,包括从基带信号接收端接收输入的基带信号,对该输入的基带信号进行预失 真处理,再将预失真处理后的信号数4莫转换、上变频处理为射频信号;将所述射频信号分为第一路射频信号和第二路射频信号,对第一路射频 信号进行第一 1/4波长延迟处理后输出到峰值放大器进行放大处理;载波放 大器对第二路射频信号进行放大处理,再对载波放大器放大处理后的信号进 行第二l/4波长延迟;将所述峰值放大器放大处理后的信号与所述第二 1/4波长延迟后的信号 并禺合后输出;从所述耦合后输出的信号中提取一部分反馈信号,将所述反馈信号下变频、模数转换为反馈基带信号;比较所述反馈基带信号和所述输入的基带信 号,根据比较结果输出预失真参数,根据该预失真参数对输入的基带信号进 行预失真处理;其特征在于,还包括从所述输入的基带信号提取包络信号,将所述包络信号处理为所述峰值 放大器工作的第一栅压值,所述峰值放大器根据所述第一栅压值对所述第一 1/4波长延迟后的信号进4亍》文大处理。
15、 根据权利要求14所述的数字预失真功率放大器处理信号的方法,其 特征在于,将所述包络信号处理为所述峰值放大器工作的第一栅压值,具体 为..根据预先存储的第 一对应表依次输出所述包络信号对应的各个数字栅压 值,将该各个数字栅压值数模转换、放大处理为所述峰值放大器工作的第一 栅压值;所述第一对应表包括与包络信号值对应的控制所述峰值;汰大器高效 率工作的数字栅压值。
16、 根据权利要求14所述的数字预失真功率放大器处理信号的方法,其 特征在于,将所述包络信号处理为所述峰值放大器工作的第一栅压值,具体 为对所述包络信号进行滤波处理,再根据所述峰值放大器的栅压值参数将 滤波处理后的信号;^大处理为所述峰值放大器工作的第一4册压值。
17、 根据权利要求14或15或16所述的数字预失真功率放大器处理信号 的方法,其特征在于还包络步骤,将所述包络信号处理为所述栽波放大器 工作的第二栅压值,所述栽波放大器根据所述笫二栅压值对所述第二路射频 信号进fl^丈大处理。
18、 根据权利要求17所述的数字预失真功率放大器处理信号的方法,其 特征在于,将所述包络信号处理为所述载波放大器工作的第二栅压值,具体 为根据预先存储的第二对应表依次输出所述包络信号对应的各个数字栅压 值,将该各个数字栅压值数模转换、放大处理为所述载波放大器工作的第二栅压值;所述第二对应表包括与包络信号值对应的控制所述载波放大器高效 率工作的数字栅压值。
19、 根据权利要求17所述的数字预失真功率放大器处理信号的方法,其 特征在于,将所述包络信号处理为所述载波放大器工作的第二栅压值,具体 为对所述包络信号进行滤波处理,再根据载波放大器的栅压值参数将滤波 处理后的信号放大处理为所述载波放大器工作的第二栅压值。
20、 根据权利要求14或15或16所述的数字预失真功率放大器处理信号 的方法,其特征在于,还包括从射频信号接收端接收输入的射频信号,将该输入的射频信号下变频、 模数转换、数字下变频处理为零中频数字基带信号输出到所述基带信号接收 端。
21、 根据权利要求20所述的数字预失真功率放大器,其特征在于在将 所述零中频数字基带信号输出到所述基带信号接收端之前,还包括步骤对 所述零中频数字基带信号的峰均比进行削峰处理。
全文摘要
本发明公开了一种数字预失真功率放大器及其处理信号的方法,该数字预失真功率放大器包括数字预失真单元、数字预失真自适应控制器、第一数模转换单元、上变频单元、功分器、第一波长延迟单元、峰值放大器、第二波长延迟单元、耦合器、载波放大器、第一下变频单元、第一模数转换单元、包络提取单元和第一信号处理单元,所述包络提取单元的一端与所述基带信号接收端连接,另一端通过所述第一信号处理单元与所述峰值放大器的栅极端连接。本发明通过包络提取单元提取输入的基带信号的包络信号,第一信号处理单元将该包络信号处理为峰值放大器工作的栅压值,进而可以根据包络信号的变化来设置峰值放大器的栅压值,使峰值放大器实时的工作在高效率状态。
文档编号H03F3/20GK101640516SQ20091004205
公开日2010年2月3日 申请日期2009年8月21日 优先权日2009年8月21日
发明者张占胜, 潘栓龙 申请人:京信通信系统(中国)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1