电加热装置和电加热装置的PTC加热元件的制作方法

文档序号:14685271发布日期:2018-06-12 23:22
电加热装置和电加热装置的PTC加热元件的制作方法

本发明涉及一种具有权利要求1前述部分特征的电加热装置。



背景技术:

这种电加热装置从EP 2 607 121 A1已知。若干个PTC元件容纳在形成加热元件壳体的定位框架中,这些PTC元件通过接触板而在相对设置的主侧表面上接触,所述PTC元件被锁定到定位框架。在一面侧,连接端口突出于加热元件壳体之外并一体形成在加热元件壳体上,由聚四氟乙烯制成的、并且外周表面上设置有迷宫式密封件的密封套筒被拉出连接端口。由塑料膜形成的绝缘层分别施加到接触板的背离PTC元件的外侧。

类似的PTC加热元件分别从EP 1 253 808 A1和EP 1 395 098 A1中已知。在该现有技术中,在制造该加热元件壳体的过程中接触板在至少一侧上与绝缘层一起包覆成型,从而使得仅PTC元件被插入到框架形加热元件壳体的开口,并且在相反的一侧由接触板和绝缘层覆盖。

尽管与前述现有技术相比,这样的实施例在生产技术方面表现出简化,但是该设计仍然相对笨重且复杂。本发明寻求提供一种PTC元件,特别是用于汽车行业。PTC加热元件越来越多地用于机动车辆中,特别是在电动机动领域。这些领域必须是制造成本低且尽可能的轻。此外,由于PTC元件具有自调节特性,并且如果PTC元件产生的热量仅被不充分地去除,则PTC元件只能以低效率运行,因此期望能够良好的热分离PTC元件产生的热量。



技术实现要素:

本发明的目的在于形成一种实现高热密度和高效率的电加热装置。

为了解决这个问题,本发明提出了具有权利要求1的特征的电加热装置。该电加热装置具有壳体,该壳体具有用于待加热流体的入口和出口。待加热流体可以是气态流体。它也可以是液态流体。流体通过循环腔室,PTC加热元件的发热表面暴露在循环腔室中。这些表面以导热的方式联接到PTC元件。PTC元件以导电的方式由电导体迹线与不同的极接触。该电加热装置与先前已知的加热装置的不同之处在于,导体迹线在PTC元件的侧面上导电地接触。侧面被理解为与PTC元件的主侧表面成直角延伸的那些表面。PTC元件通常具有片状构造,其主侧表面的主要延伸方向的延伸明显大于侧面的延伸方向的延伸。PTC元件的长度或宽度分别比PTC元件的侧面的厚度大5倍,优选地大10倍。至少对于用于机动车辆的电加热装置而言,这种构造本身已经得以验证,本发明特别适用于这种构造。PTC元件的热量通过主侧表面分离。通常,在现有技术的电加热装置中,一个接触板分别抵接这些主侧表面。

根据本发明的方案,在与其成直角延伸的PTC元件的侧表面上建立接触。然后PTC元件可以直接或者仅在插入绝缘层的情况下暴露在循环腔室中。在第一种情况下,PTC元件的发热表面由PTC元件本身形成。在第二种情况下,发热外表面由绝缘层的外表面形成。该绝缘层可以是陶瓷板。

由于PTC元件的侧面接触,多个PTC元件可以在循环腔室中彼此相对靠近地布置,同时形成待加热流体的通道。设置在PTC元件两侧的接触板被省略。从而PTC加热元件不那么厚。PTC加热元件优选直接在热水器的循环壳体中用作加热肋部。用这种电加热装置可以获得高的热密度。由于不存在与PTC元件的主侧表面平行设置的接触板,所以与现有技术相比,热量可以经由PTC元件的这些主侧表面更好地耗散。通常将热量直接引入绝缘层中,并通过热传导将热量耗散到暴露在待加热流体流中的外表面。

本发明还提出了一种具有PTC元件和电导体迹线的PTC加热元件,所述电导体迹线可以与不同的极相关联并且以导电的方式与PTC元件接触。每个导体迹线都由金属板片构成。每个金属板片优选在侧面直接与PTC元件接触,即直接抵靠PTC元件的金属层。为此,金属板片优选地包括接触脊部,该接触脊部优选仅仅抵靠PTC元件的侧面表面,即不在PTC元件的主侧表面上延伸。金属板片优选也形成接触片。该接触片被构造为电插塞连接的公插头元件,使得电加热装置中的PTC元件能够通过插入到母插头元件保持夹具中而被电连接。接触脊部优选在PTC元件的宽度方向上比接触片更窄。PTC加热元件因此可以被设计成具有仅比PTC元件的宽度稍微大的宽度。

根据本发明的一个优选的改进方案,导体迹线的两个接触片在单个侧面,即在相关联的接触脊部的纵向延伸方向上突出于PTC元件之上。部分地突出PTC元件的接触片横向于该延伸方向被引导朝向彼此。接触脊部形成为在宽度方向上比接触片更窄,但是由于接触片被引导朝向彼此,所以不会导致PTC加热元件的附加宽度。换句话说,接触片在宽度方向上部分地突出超过PTC元件。

至少接触脊部,总体上均匀的两个金属板片,优选比PTC元件的厚度小。因此,布置在PTC元件的侧面处的,优选地与其粘合的金属板片可以通过放置在PTC元件的主侧表面上的绝缘层至少在PTC元件的高度处突出。然后该绝缘层可以大致终止于接触脊部的高度处并且连接到形成PTC加热元件的加热元件壳体的塑料框架,该塑料框架优选地通过包覆模制形成塑料框架的塑料材料进行连接。这种塑料材料优选是弹性体材料,尽管通常不是热塑性弹性体,而是交联的弹性体。

与接触脊部的厚度相比,接触片自身可以被设计为具有减小的厚度。接触片通常在设置在PTC元件的主侧表面的平面中的接触片的表面上实现接触。

考虑到PTC加热元件的小的宽度,金属板片形成沿金属板片的整个长度平坦的边缘表面。该边缘表面是与接触表面相对设置的金属板片的外表面。金属板片的接触表面是直接抵靠PTC元件并在侧面将电力电流引入PTC元件的表面。由于平坦的边缘表面,可以形成相对较窄的加热元件壳体,该加热元件壳体促进PTC加热元件在电加热装置中的紧凑布置,并由此具有高热密度。

如已经提到的那样,加热元件壳体优选由整体围绕PTC元件的塑料框架形成。塑料框架优选围绕绝缘层的所有边缘表面。优选地,金属板片也大体嵌入塑料框架中。只有接触片在一侧突出于塑料框架之外。

优选地,根据本发明的PTC加热元件具有由弹性体形成的加热元件壳体。弹性体优选不是热塑性弹性体,而是在加热时不可熔的交联弹性体。这种加热元件壳体在周向上密封至少一个PTC元件并将其封闭。插塞连接的公插头元件优选由加热元件壳体形成。

弹性体优选形成周向密封接触片的密封套环。该密封套环被构造成适于在PTC插入方向上保持PTC加热元件的插塞连接。

根据本发明的一个优选实施例,密封套环被构造成在接触片的自由端的方向上呈锥形地渐缩。密封圈可以设置为具有若干个锥形渐缩的段的迷宫式密封件。在接触片的纵向方向上一个接一个地设置各个段,并且这些段的尺寸例如设置成使得所有的段具有相同的最大宽度。止挡件可以通过加热元件壳体的弹性材料在该密封套环的端部处形成并且与由分隔壁形成的配合表面轴向地和/或径向地相互作用。止挡件通常是盘形的。

密封套环可以完全由弹性体材料形成。在这种情况下,密封套环仅被形成接触片的金属片材料穿透。然而,密封套环也可以设置为在由形成接触片的金属片贯穿的插头元件上的相对较薄的层。该插头元件可以例如由塑料材料形成,该塑料材料通过包覆模制而连接到金属片材料。插头元件可以将两个接触板保持在一个预定的距离并因此连接它们。这样制备的插头元件可以与优选地已经与PTC元件电接触的接触板一起插入到注塑模具中,以便通过注塑成型形成加热元件壳体并且将其连接到(优选与直接施加在PTC元件外侧的绝缘层一起)PTC元件。

根据本发明的一个优选的改进方案提出将接触板形成为壳体和仅在周向上包围至少一个PTC元件的框架。所述框架形成相对设置的框架开口,PTC元件暴露在框架开口之下。优选地,优选地由陶瓷板形成的绝缘板暴露在框架开口中的至少一个中。PTC元件通常直接位于绝缘板后面。PTC元件的接触优选在侧面上实现,这促进良好地分离PTC元件产生的热量。

框架被成形为相对较薄的部件,从而在循环腔室内仅占据很小的空间。这提供了在循环腔室内将各个PTC加热元件彼此相对紧凑地布置的可能性。单独的密封套环不会显著地突出于框架的厚度之上。根据本发明的一个优选的改进方案,建议形成厚度不大于密封套环的厚度的0.5倍的框架。

此外,PTC元件的相对布置的主侧表面优选地基本上不被形成加热元件壳体的弹性体覆盖。这意味着PTC元件的至少85%的主侧表面暴露在框架开口内并且不被弹性材料覆盖。因此提出,PTC元件的彼此相对设置的主侧表面不显著地不被接触板覆盖。因此,PTC元件的接触主要优选仅通过PTC元件的侧面进行。绝缘层通常直接抵接PTC元件。特别优选地,PTC元件由相对设置的绝缘层突出。接触板通常是如下所述的PTC加热元件的元件,即:该元件形成接触片并且以导电的方式作为电极直接连接到PTC元件,优选与其粘合。

绝缘层可由基本上覆盖PTC元件的整个主侧表面的单层或多层绝缘板形成,所述单层或多层绝缘板均匀地与PTC元件重叠,即,至少在一侧上,优选在多侧上,特别优选在整个侧面上突出于PTC元件。绝缘层可以例如通过陶瓷板和塑料板的组合来形成。然而,绝缘层也可以例如通过用电绝缘材料涂覆PTC元件而形成。在这种情况下,PTC元件形成衬底,并且绝缘层的外表面通常暴露在塑料框架内,从而产生由PTC元件产生的热的良好的热输出。涂层的一个实例是陶瓷涂层,其通过PVD或CVD施加到PTC元件上作为衬底。作为绝缘涂层施加到PTC元件的主侧面上的绝缘层可以与由陶瓷和/或塑料材料制成的绝缘板组合。

以这种方式配置,接触板形成金属板片。金属板片优选地包括在侧面抵靠PTC元件的接触脊部并且形成另外的接触片。与PTC元件的宽度平面中的相关联的接触片相比,抵靠PTC元件的相对布置的侧面侧的两个金属板片的接触片分别被加宽。接触片通常在长度和宽度方向上在PTC元件上方突出并且朝向彼此。

根据本发明的一个优选的改进方案,所述塑料框架在其外侧上设置有渐缩的邻接脊部。该邻接脊部形成为在塑料框架的厚度方向上渐缩。邻接脊部通常至少在塑料框架的框架结构上设置。特别优选的是,邻接脊部设置在塑料框架的三个连续的外侧或框架连接件上。在与接触表面相对设置的塑料框架的侧面上,底部邻接脊部形成对加热装置壳体的基部的密封。与其成直角延伸的边缘侧邻接脊部用于密封加热装置壳体的侧壁。PTC元件可以以交替错开的方式设置,使得每个第一PTC加热元件抵靠例如加热装置壳体上的左侧,而每个第二PTC加热元件抵靠在相对的右壳壁上。这以简单的方式形成弯曲的流动通道。边缘侧邻接脊部将PTC加热元件对着加热装置壳体进行密封。邻接脊部优选地形成为一件式(one piece)的,即,是注塑塑料框架的整体部件。特别地,在将根据本发明的PTC加热元件安装到加热装置壳体中之后,下邻接脊部也可以用作压缩元件,以便通过弹性预张力确保特定的安装位置。这种固定可以是机械固定,用于将PTC加热元件机械地固定到加热装置壳体上。然而,预张力还可以或附加地提供接触片的可靠接触,因为PTC加热元件是预张紧的。

附图说明

根据以下结合附图的实施例的描述,本发明的进一步细节和优点将变得显而易见,其中:

图1示出了壳体的第一实施例的立体俯视图;

图2示出了图1所示实施例的立体侧视图;

图3示出了设置在第一实施例中的盖板22,其与PTC加热元件一起被单独地示出;

图4示出了当装配有PTC加热元件时图3所示的盖板;

图5示出了本发明的第二实施例的立体截面侧视图;

图6示出了根据图5中的视图的细节VI;

图7示出了第二实施例的控制桶的立体图;

图8示出了沿着根据图7中的视图的沿线VIII-VIII截取的立体纵截面图;

图9示出了具有设置在塑料壳体上的屏蔽件的第二实施例的立体局部展示侧视图;

图10示出了PTC加热元件的部件的立体侧视图;

图11示出了PTC加热元件的部件的局部展示立体侧视图;

图12示出了PTC加热元件的立体横截面图;

图13示出了穿过根据图3和图4的盖板的纵截面图,其中单个PTC加热元件被容纳在其中;

图14示出了去除壳体盖的另一实施例的立体侧视图;

图15示出了没有壳体盖的另一实施例的类似于图14的视图;

图16示出了穿过另一实施例的分隔壁的立体截面图。

具体实施方式

1.加热装置的基本构造

图1示出了配置为热水器的电加热装置的由附图标记2表示的壳体的立体俯视图。壳体2具有由塑料材料制成的壳体桶元件4。这种塑料材料目前是硬质塑料材料。壳体2形成一个进入端口6和一个排出端口8,入口端口6和排出端口8目前实施为一体地形成在壳体桶元件4上。端口6和端口8被设计成软管连接端口,分别形成到由附图标记14表示的循环腔室14的一个入口10和一个出口12。循环腔室14被分成两个加热腔室,在图1和图2中仅能看到图中前面所示的在两个加热腔室中的加热腔室16。循环腔室14由分隔壁20分开,分隔壁20一体地形成在壳体桶元件4上并且从壳体桶元件4的基部18向内突出,并且通过由附图标记24表示的并且形成在由附图标记22表示的盖板上的另外的分隔壁24延续。在与两个喷嘴6、8相对设置的一侧上,两个加热腔室16通过连接通道相互连接,所述连接通道可以在根据图5的壳体2的第二实施例中看到并由附图标记26表示。该连接通道26通过通道壁隔段28和通道壁隔段30与加热腔室16分开,通道壁隔段28一体地形成在盖板22上并且与分隔壁20成直角地延伸,通道壁隔段30从壳体桶元件4的基部18突出。

盖板22由塑料材料制成。在当前情况下,盖板22由硬质塑料材料制成。原则上,使用硬质塑料材料制造壳体2或其部件具有如下优点:硬质塑料材料表现出约150℃的相对高的温度稳定性,并且在-40℃的温度下也不显示脆性。由于在加热操作期间以及在极寒地区操作车辆时产生的要求,这导致全部或部分由硬质塑料材料形成的壳体具有更好的耐温性能。然而,与热固性材料相比,硬质塑料材料也是优选的,因为硬质塑料材料比热固性材料具有更好的抵抗泄漏电流的阻力。

图4示出了没有壳体桶元件4的盖板22。盖板22具有周向边缘32,周向边缘32与形成在外壳桶元件4上的周向槽34相互作用。在周向边缘32穿透进入该槽34之前该槽34充满粘合剂,在当前情况下为充满环氧树脂胶,以将盖元件22粘接到壳体桶元件上。隔段24和隔段28以相同的方式分别连接到壳体桶元件4的对应的壁元件20和30。循环腔室14然后以流体密封的方式密封在壳体桶元件4的基部18与盖元件22之间,并且被由壳体桶元件4形成的壁周向地围绕并且与其基部18成直角地延伸。

在组装之前,盖元件22以图3和4所示的方式安装PTC加热元件40。为了该目的,将PTC加热元件40在连接侧(即,每个PTC加热元件40都具有两个接触片42)插入到一体形成在盖板22中的母插头(插座)元件保持夹具44中。这些插头元件保持夹具44每个都设置接触片42(参见图1和图3)穿透其中的纵向狭槽46。纵向狭槽46是在盖板22(作为内壁的一个实例)中开口的通孔的实例。

图4示出了将PTC加热元件40插入到母插头元件保持夹具44中。对于在插入之后建立的插塞连接,PTC加热元件40具有密封套环48,该密封套环被构造成适于插头元件保持夹具44的尺寸并且由弹性材料形成,该弹性材料密封地注入到母插头元件保持夹具44中,使得狭槽46流体密封地紧密抵靠着循环腔室14。此外,通过注射形成密封套环48的材料,PTC加热元件40被保持摩擦地接合在母插头元件保持夹具44内,即也在与接触片42的纵向延伸方向相对应的插入方向上。以这种方式连接,即使具有母插头元件保持固定夹具44的盖板22向下取向,PTC加热元件40也粘附到盖板22,如图3所示。

2.壳体基部构件

图5以截面图的形式示出了由附图标记50表示的壳体基部构件的实施例的属性。壳体基部构件50形成由附图标记52表示的壁,壁52在周向上围绕循环腔室16,即,加热室16和连接通道26。在先前描述的实施例中作为单独部件提供的盖板22目前与壳体基部构件50一体地构成,并且目前也形成分隔壁54,类似于第一实施例,分隔壁54将循环腔室16与连接腔室56分隔开,目前所有PTC加热元件40的所有接触片42都暴露在连接室56中。由附图标记58指示的、周向地包围连接腔室的壁也由壳体基部构件50形成。最后,分别在端口6和端口8的延伸方向上以及在该方向上在循环腔室16或连接腔室56后面,壁60由壳体基部构件50形成并且周向地围绕控制腔室62。由附图标记64表示的控制腔室基部由壁52中的一个和壁58中的一个部分地形成,壁60从控制腔室基部64上形成。在平行于喷嘴6和喷嘴8的延伸方向延伸的截面图中,壳体基部构件因此看起来具有H形横截面,并且在H的一侧邻接有U。壳体基部构件50由塑料材料制成并且构造为一体形成的部件。壳体基部构件50目前由硬质塑料材料形成。

每个壁52、58和60在侧面都设有周向凹槽66、68、70。这些凹槽66、68、70的功能特别由图6示出。在此示出了控制腔室62的盖元件72,该盖元件被构造为具有周向边缘74的基本平坦的板。边缘74在相关联的槽70中接合并且将施加在那里的粘合剂移位(在当前情况下为环氧树脂粘合剂)。边缘74形成配合凹槽76的外边缘,配合凹槽76形成在盖元件72上并且在内部由内脊部78限定。由此形成了一种迷宫式密封件,被移位的粘合剂可以进入该迷宫式密封件中,在安装盖元件72之前该粘合剂已被引入凹槽70或配合凹槽76中。相应地,覆盖循环腔室14的壳体盖80和覆盖连接腔室56的壳体盖82分别形成在边缘侧上,并且附接到壳体基部构件50并且抵靠它密封。

同样如图6所示,控制腔室基部64设置有通道开口84,冷却元件86被引入通道开口84中。密封环88设置在冷却元件86和通道开口84的内圆周壁之间,用于将循环腔室14相对于控制腔室62密封。在控制壳体侧,冷却元件86形成环形止挡件90,止挡件90抵靠通道开口84的侧面端面,其作为突出套环92朝向控制腔室62的方向延伸并且由壳体基部构件50的材料形成。

如图7所示,冷却元件88的外周向表面至少在朝着循环腔室14的方向上形成基本上为圆柱形,该外周向表面在锁定突起94的相对侧沿周向突出,锁定突起94与锁定卡爪96相互作用,所述锁定卡爪96在内圆周上突出于基本上圆柱形的通道开口84以形成卡口式锁定装置,冷却元件86利用所述卡口式锁定装置相对于壳体基部构件50锁定。密封环88可构造成使得这种锁定装置保持轴向和/或径向预张紧。另外,控制腔室基部64可以在循环腔室14的侧面上设有邻近通道开口84的开口的凹部,锁定突起94接合在该凹部中,并且以形状适配且防止旋转的方式保持冷却元件86以防止卡口式锁定装置94、96被意外地释放。

图7提供了由控制腔室基部64和壁60形成的控制壳体桶的视图,并且在最终的组装状态下该壳体桶由盖元件72封闭。

图5示出在分隔壁54上方的由分隔壁54和壁58形成的连接桶100。在位于其下方的根据图5的视图的一侧上,由分隔壁54和壁52通过壳体基部构件50形成循环壁102。壳体基部构件50形成基本上仅需要被盖元件72、80、82覆盖的所有腔室14、56、52,以便形成可操作并形成为轻质塑料部件的电加热装置。

3.密封地包覆成型的电流条

图8示出了在连接腔室56和控制腔室62之间作为导体迹线提供的电流条104。电流条104在控制腔室基部64的高度处并在控制腔室基部64内以相反的方向两次弯曲90°。位于控制腔室62内的电流条104的一端被配置为用于设置在控制腔室内的印刷电路板组件106(参见图6)的插头连接件。另一端设置在连接腔室内,作为用于设置在连接腔室内的分配器板(在前面的附图中省略)的连接条108。分配器板可以像EP 2 505 931 A1中那样构造。若干个连接条108通过以相同方式设置的若干个电流条104暴露在连接腔室56内。连接条108平行于接触片42延伸到PTC加热元件。分配器板可以从上方降入连接腔室中以接触所有的接触片42和连接条108。

4.屏蔽作用

金属板片128由冲孔金属板片形成,并表示接触板的实施例。

图9示出了上述壳体2的局部截面图。该塑料壳体2被两个金属外壳110和112包围,这两个金属外壳110和112形成对电加热装置的屏蔽,使得电磁辐射不能从电加热装置射出。金属壳体110和112的分界面大致位于两个喷嘴6和8的中心高度处。金属外壳110和112基本上完全围绕壳体2。只有形成在塑料壳体2上的附接突起114向外突出超过金属外壳110和112,穿过在金属外壳110和112上形成的凹槽115并穿过由此形成的屏蔽。而且,由附图标记116和118表示的连接器壳体突出,其中连接器壳体116目前设置用于高压电力电流,并且连接器壳体118设置用于低压控制线路。图9所示的实施例允许通过由塑料材料制成的附接元件110来连接壳体2。在使用它们时,可以以简单的方式来满足将壳体2固定在机动车辆内的所需位置的要求。在图9中,金属外壳110和112形成为基本上端对端。它们也可以由多孔板形成,而不受金属外壳110和112的影响,因为缺失EMC保护。

5.作为框架元件的PTC加热元件

图10示出了PTC元件120,其在其相对设置的主侧表面122上设置有绝缘层124。绝缘层124目前是由氧化铝制成的陶瓷板。然而,它也可以作为涂层施加到PTC元件120上,或者作为涂层与单层或多层绝缘涂层的组合。PTC元件120被设计为分别具有宽度B或长度L的片状,宽度B或长度L比对应于两个主侧表面122之间的距离的厚度D大至少10倍。基本上在长度方向L上延伸的金属板片128设置在彼此相对设置的侧面表面126上,并粘接到PTC元件120上,并以导电的方式与PTC元件128的表面金属化部连接,表面金属化部通过PVD或CVD的方式施加以用作一种保护。每个这些金属板片都形成导体迹线,以不同的极性与PTC元件120通电。金属板片128由相对较窄的接触脊部130和相对于接触脊部130在宽度方向B上加宽的接触片42组成。

目前形成到PTC元件的电极的接触脊部130电连接到PTC元件120的金属化部。接触片42的厚度小于接触脊部130的厚度。接触脊部130的厚度又小于PTC元件的厚度D。金属板片128被设置成使得其在任何点都不突出到PTC元件120的主侧表面122之上。如特别在图11和12中可见,绝缘层124横向突出超过PTC元件120。绝缘层124因此具有大于PTC元件120的主侧表面122的基部区域的基部区域。因此,绝缘层124的外边缘在其两侧接收它们之间的接触脊部130(参见图12)。每个接触脊部130粘合到相对设置的侧面表面126中的一个上。绝缘层124同样粘合到PTC元件120上。绝缘层124直接抵靠PTC元件。绝缘层124中的一个因此直接接触PTC元件的相关联的主侧表面122。

相应的金属板片128的外侧是完全平坦的并且严格沿着长度L的方向延伸。接触片42在宽度方向上形成为大于接触脊部130并且在PTC元件120上朝向彼此伸出(参见图10)。接触片42也比接触脊部130更薄。

与接触脊部130相比加宽的金属板片128的区域被容纳在以框架状的方式围绕PTC元件120的加热元件壳体134中。该塑料框架134包围绝缘层124的周向边缘。边缘表面132也由形成塑料框架134的材料密封。塑料框架134通过包覆模制弹性材料而形成为弹性塑料框架134。在成品PTC加热元件40的情况下,只有接触片42在侧面塑料框架134上突出。用于发热和导电的PTC加热元件40的所有其他功能部件被容纳在塑料框架134内。特别如图12所示,具有相对设置的主侧表面122的PTC元件120位于由附图标记136表示并由塑料框架134形成的框架开口后方。这些框架开口136被绝缘层124覆盖。在此塑料框架134几乎不覆盖PTC元件的主侧表面122,从而这使PTC元件120的主侧表面122的大约100%暴露在所述框架开口136的后方。

塑料框架134的与密封套环48成直角地突出的框架连接件在边缘侧上分别设置有邻接脊部137。邻接脊部137被设计成锥形板条,其厚度与塑料框架134的厚度相比逐渐减小。例如,可以看出,在图6中,每个PTC加热元件40都被设置成一个PTC加热元件相对于后面的一个PTC加热元件稍微交错开,使得每个第一PTC加热元件40在左侧抵靠在壳体2的壁上,并且在那里通过密封地抵靠在循环腔室14的边界壁上的邻接脊部137密封。因此,没有流体可以在该侧上流过PTC元件40,但是其可以流过位于上游或下游的流动方向上的PTC加热元件。后者又用其邻接脊部137抵靠限定循环腔室14的相对侧的壁,并在那里改变流动通道的方向。因此,通过PTC加热元件40的交替布置形成弯曲流动通道。

6.插塞连接

塑料框架134还形成前面描述的密封套环48,该密封套环48设置有朝接触片42的自由端渐缩的段138(参见图13)。这些段138中的三个目前在接触片42的纵向延伸方向上依次设置。在框架开口136和这些段138之间由加热元件壳体134形成环形止挡件140。如图13所示,该止挡件密封抵靠由母插头元件保持夹具44形成的圆柱形配合表面142。

如图2和5所示,PTC元件40的相对布置的侧面在安装之后邻接壳体2的基部18。为了精确定位,在基部18上设置有凹部144,加热元件壳体134的侧面表面容纳在凹部144中。这确保了PTC加热元件相对于分隔壁54精确的直角定位。此外,产生了保持力,其防止插入分隔壁54中的PTC加热元件40在操作过程中特别是由于车辆的振动从母插头元件保持夹具44脱落。PTC加热元件40的这个基部侧邻接也确保了PTC加热元件的插塞连接内的接触压力,从而它们将纵向狭槽46牢固且永久地密封到连接腔室56。

可以理解的是,凹部144也可以被省略。类似于邻接脊部137,邻接脊部137也可以设置在塑料框架134的与密封套环48相对设置的下侧上,并在那里密封,以及被支撑并抵靠壳体2的承受弹性压缩的基部18。这不仅在PTC加热元件40的下侧和壳体2之间提供紧密的流体密封。而是由于邻接脊部的压缩,也产生压缩力,并且将PTC加热元件40被圈住地保持在母插头元件保持夹具44中,即使当强烈的振动作用在电加热装置上时也是如此。

7.PTC加热元件的电连接

图14-16示出了使用另一实施例的实例的PTC加热元件40的电连接。图15示出了没有壳体2及其部件的实施例,类似于图3中的图示。对于电连接,在连接腔室56中提供冲孔金属板作为电流条146、148、150,其包括通过冲压和弯曲而形成的接触突起152,接触突起152抵靠受到弹性预张紧的接触片42并与接触片42接触。接触突起152突出到插座开口154中,插座开口154凹陷在电流条146、148、150的金属板片中。由附图标记148表示的电流条具有对应的插座开口154,其具有用于电流条104的接触突起152。由附图标记146和148表示的电流条每个都配备有功率晶体管156,功率晶体管156以导电的方式连接到相应的电流条146、150并且安装在电流条146和150上。功率晶体管156在输入侧连接到导体158,导体158同样形成为电流条,并且也设置有插座开口154,插座开口154具有用于分别通过电流条104接触的接触突起152。在连接腔室56内的导电仅通过金属板元件实现。这些金属板元件专门配备有功率晶体管156作为电气或电子元件。不再提供另外的电气或电子元件。

如特别在图16中所示,这些金属板146、148、150、158以彼此电绝缘的方式被插入到连接腔室56中并定位在那里。用于致动在电路板106上处理的功率晶体管146的控制信号经由导体158中的至少一个供应到相应的功率晶体管156。

图16示出了也在图15中由附图标记86表示的冷却元件的高度处的截面图。例如由卡普顿(Kapton)或陶瓷板制成的电绝缘涂层160施加在冷却元件86和功率晶体管156之间。设置在该绝缘层160和功率晶体管156之间的电流条146、150导致一定程度地扩散了功率晶体管156发射的热量。为此目的,电流条146或150分别可以是配置为至少在功率晶体管156的区域中具有更大的厚度。同样可以分别由铜形成电流条146或150,并由此形成具有良好导热性的材料。由于型辊,金属板材料在功率晶体管156的区域中可以具有增加的厚度。

电流条146、148、150、158可以通过冲压的方式设置有卷边突片或类似物,卷边突片或类似物与壳体2相互作用以将相应的电流条146、148、150、158附接到壳体2和/或将功率晶体管146抵靠或压靠经受预张紧的冷却元件86。

图16还示出了PTC加热元件40的变型。据此,接触片42在塑料框架134内被接收在由硬质塑料部件形成的连接插头162中。接触片42通过包覆成型被接收在连接插头162中。连接插头162由具有良好的抗漏电流和耐火性能的硬质塑料材料制成。连接插头162形成用于由PTC加热元件40形成的公插头元件的硬芯。该连接插头162仅被密封套环48的软弹性材料的薄涂层覆盖,由此在母插头元件保持夹具44内密封套环48形成的压缩力增加。连接插头162可以例如通过包覆模制两个金属板片128来实现,这两个金属板片128分别形成接触脊部130和接触片42作为一体形成的部件。以这种方式制备并且在空间上和物理上相对于彼此定位的情况下,连接插头162与金属板片128一起可以用软弹性塑料部件包覆模制以形成塑料框架134(如上所述)。

在根据图14-16的变型中,密封套环也形成为细长的。然而,不言而喻,每个单独的接触片42可以布置在具有基本上圆形或椭圆形横截面的圆柱形密封套环中。母插头元件保持夹具44同样具有分别为圆形或椭圆形的横截面。与具体描述的实施例相比,这样的实施例可以增加紧密度。可以理解,多边形横截面也是可能的。

图16进一步示出了冷却元件86在分隔壁54内的附接。在分隔壁54的高度处,冷却元件86在其外周上具有在边缘侧上突出超过冷却元件86的连接套环164,连接套环164通过对形成隔件54的塑料材料进行包覆成型而以形状适配(positive-fit)的方式密封。连接套环164的设计附带地也改进了循环腔室14和连接腔室56之间的密封性。

根据一个变型(未示出),突出到连接腔室56的冷却元件86的表面也可以被形成分隔壁54的塑料材料覆盖。当冷却元件46被包覆成型时,可以通过在冷却元件86的表面和连接腔室56的内部之间注塑成型形成薄膜,功率晶体管156经由所述薄膜以电绝缘方式抵靠冷却元件86。这进一步简化了生产。功率晶体管156和冷却元件86之间不需要设置单独的电绝缘层。

附图标记说明

2 壳体

4 壳体桶元件

6 进入端口

8 排出端口

10 入口

12 出口

14 循环腔室

16 加热腔室

18 基部

20 分隔壁

22 盖板

24 分隔壁

26 连接通道

28 通道壁隔段

30 通道壁隔段

32 边缘

34 凹槽

40 PTC加热元件

42 接触片

44 母插头元件保持夹具

46 纵向狭槽

48 密封套环

50 壳体基部构件

52 壁

54 分隔壁

56 连接腔室

58 壁

60 壁

62 控制腔室

64 控制腔室基部

66 循环腔室14的凹槽

68 连接腔室56的凹槽

70 控制腔室62的凹槽

72 覆盖控制腔室62的盖元件

74 边缘

76 配合凹槽

78 内脊部

80 覆盖循环腔室的壳体盖

82 覆盖连接腔室的壳体盖

84 通道开口

86 冷却元件

88 密封圈

90 止挡件

92 套环

94 锁定突起

96 锁定卡爪

98 控制壁

100 连接壁

102 循环壁

104 电流条

106 印刷电路板

108 连接条

110 金属外壳

112 金属外壳

114 连接突起

115 凹部

116 高电压连接器壳体

118 低电压连接器壳体

120 PTC元件

122 主侧面

124 绝缘层

126 侧面表面

128 金属板片

130 接触脊部

132 边缘表面

134 加热元件壳体/塑料框架

136 框架开口

137 邻接脊部

138 段

140 止动件

142 配合表面

144 凹部

146 电流条

148 电流条

150 电流条

152 接触突起

154 插座开口

156 功率晶体管

158 导体

160 绝缘涂层

162 连接插头

164 连接套环

B PTC元件的宽度

L PTC元件的长度

D PTC元件的厚度

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1