NMOS开关驱动电路及电源装置的制作方法

文档序号:21656546发布日期:2020-07-29 03:13阅读:678来源:国知局
NMOS开关驱动电路及电源装置的制作方法

本实用新型涉及电路技术领域,尤其涉及一种nmos开关驱动电路及电源装置。



背景技术:

随着微电子技术的发展,n沟道mosfet相较于三极管和p沟道mosfet在高频率、大功率和高效率的开关应用场合表现出越来越明显的优势。根据其器件特性,在n沟道mosfet栅极施加相对于源极的高压信号,能够控制n沟道mosfet漏极与源极有效开启,设置n沟道mosfet栅极电压跟随源极电压,则能控制该n沟道mosfet漏极与源极有效关断。

现有的nmos开关驱动电路中,nmos开关连接于供电电源和负载之间。当供电电源的电压上下波动时,nmos开关的驱动电压也会遭遇下降或上升较宽的压降波动,进而导致驱动电压可能达不到nmos开关的导通条件,如使nmos开关处于半导通状态(即工作在线性区),其内阻增大,nmos开关发热严重的现象;或者导致驱动电压超过nmos开关栅源极耐压,而导致nmos开关击穿、短路或烧毁的情况发生。



技术实现要素:

本实用新型实施例公开一种nmos开关驱动电路及电源装置,能够提供稳定的驱动电压,进而可以保证动nmos开关的正常驱动,从而可以延长nmos开关的寿命以及提高nmos开关驱动电路工作的稳定性。

第一方面,本实用新型实施例公开的一种nmos开关驱动电路,应用于电源装置中,所述电源装置设置有第一接口端和第二接口端;所述nmos开关驱动电路包括:

电源单元,用于输出第一电压;

开关单元,电连接于所述电源单元与所述第一接口端之间,用于建立或者断开所述电源单元和所述第一接口端之间的电性连接;其中,所述开关单元包括至少一个nmos开关;以及

电源转换单元和驱动单元,所述电源转换单元的一端与所述电源单元相连,且另一端通过所述驱动单元与所述开关单元电连接;

所述电源转换单元用于将第一电压转换成恒定的驱动电压后通过所述驱动单元输出至所述开关单元以驱动所述开关单元导通,进而建立所述电源单元和所述第一接口端之间的电性连接。

第二方面,本实用新型实施例公开的电源装置,包括第一接口端和第二接口端;还包括如第一方面所述的nmos开关驱动电路;所述nmos开关驱动电路通过所述第一接口端和所述第二接口端与负载相连。

本实用新型实施例提供的nmos开关驱动电路及电源装置,由于包括了电源转换单元,将第一电压转化成恒定的驱动电压输出至所述开关单元,也即,即使在第一电压发生上下波动的情况,nmos开关也会接收到稳定的驱动电压,并不会受前端电源单元输的第一电压的拨动的影响,进而保证了开关单元的有效驱动,延长了开关单元的使用寿命,提高了nmos开关驱动电路工作的稳定性,避免了因驱动电压过高而导致开关单元被击穿损坏或者因驱动电压过低而导致开关单元发热严重的情况发生。

附图说明

为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请一实施例中的电源装置的原理框图。

图2为本申请一实施例中的nmos开关驱动电路的原理框图。

图3为本申请另一实施例中的nmos开关驱动电路的原理框图。

图4为本申请一实施例中的nmos开关驱动电路的电路原理图。

图5为本申请另一实施例中的nmos开关驱动电路的电路原理图。

具体实施方式

下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

当一个元件被认为与另一个元件“相连”时,它可以是直接连接到另一个元件或者可能同时存在居中元件。除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。

本申请提供一种电源装置及应用于该电源装置中的nmos开关驱动电路。所述nmos开关驱动电路用于与负载相连,以在nmos开关导通时电源装置可以为负载供电。本申请实施例中的nmos开关驱动电路可以提高nmos开关驱动电路在工作过程中的稳定性。下面结合附图对本申请的实施例进行介绍。

请参阅图1,本实用新型一实施例提供一种电源装置300。所述电源装置300用于与负载200相连以为负载200供电。具体地,所述电源装置300包括nmos开关驱动电路100,且设置有第一接口端n1和第二接口端n2。所述nmos开关驱动电路100通过所述第一接口端n1和所述第二接口端n2与负载200相连。其中,所述第一接口端n1和所述第二接口端n2可以以接线端子的形式存在,具体实现方式并不限定。

本申请实施方式中,所述电源装置300为应急启动电源,负载200可以是汽车内的蓄电池(电瓶)。由于汽车蓄电池与汽车发动机连接,因此,应急启动电源与汽车蓄电池连接后,二者可以共同向汽车发动机提供启动电流以应急启动汽车。在其他实施方式中,所述电源装置300还可以是其他类型的电源(如电动工具电源),在此不做限定。

请参阅图2,其为本申请一实施例中的nmos开关驱动电路100的原理框图。所述nmos开关驱动电路100包括电源单元10、开关单元20、电源转换单元30及驱动单元40。

所述电源单元10用于输出第一电压。在一实施方式中,所述电源单元10可以包括电池组(图未示)。具体地,电池组可包括一个或多个相连的电池模块,其中,每个电池模块可以包括至少一个电芯(单体电池),例如,电芯可以为重量轻、节能且环保的锂离子电芯。在一具体的实施方式中,所述多个电池模块可以通过串并联的组合方式来提电源单元10的输出电压和电流。可以理解,随着电源单元10的使用或者当负载200启动时第一电压会发生改变。

所述开关单元20电连接于所述电源单元10和所述第一接口端n1之间,且包括至少一个nmos开关。所述开关单元20用于建立或者断开所述电源单元10和所述第一接口端n1之间的电性连接。在本实施方式中,所述第一接口端n1为正接口端,所述开关单元20连接于电源单元10的正极和第一接口端n1之间。所述第二接口端n2为负接口端,所述电源单元10的负极和所述第二接口端n2相连。

所述电源转换单元30的一端与所述电源单元10相连,且另一端通过所述驱动单元40与所述开关单元20电连接。所述电源转换单元40用于接收所述电源单元10输出的第一电压,并将第一电压转换成恒定的驱动电压后通过所述驱动单元30输出至所述开关单元20,以驱动所述开关单元20导通。

本申请实施例中所公开的nmos开关驱动电路100,由于包括了电源转换单元30,将第一电压转化成恒定的驱动电压输出至所述开关单元20,也即,即使在第一电压发生上下波动的情况,nmos开关也会接收到稳定的驱动电压,并不会受前端电源单元10输的第一电压的拨动的影响,进而保证了开关单元20的有效驱动,延长了开关单元20的使用寿命,提高了nmos开关驱动电路100工作的稳定性,避免了因驱动电压过高而导致开关单元20被击穿损坏或者因驱动电压过低而导致开关单元20发热严重的情况发生。

本申请实施例所提供的电源装置300,由于采用了上述的nmos开关驱动电路100,能够为负载200提供稳定的工作电压,进而提高了电源装置300的性能及品质。

在一种实施方式中,为了实现对开关单元20的有效控制,所述nmos开关驱动电路100还包括控制单元50。所述控制单元50分别与所述电源转换单元30及所述驱动单元40电连接。所述控制单元50用于输出转换信号至所述电源转换电源30,且还用于输出驱动信号至驱动单元40。所述电源转换单元40根据所述转换信号将所述第一电压转换成所述驱动电压。所述驱动单元40根据所述驱动信号将所述驱动电压输出至所述开关单元20以驱动所述开关单元20导通。其中,转换信号可以是高电平信号或者低电平信号;驱动信号可以是高电平信号或者低电平信号,在此不做限定。

在本实施方式中,所述控制单元50可为单片机。所述控制单元50可包括多个信号采集端口、通信端口、多个控制端口等。

请参阅图3,在另一实施方式中,与前述实施方式(图2)不同的是,所述nmos开关驱动电路100还包括电流检测单元60。所述电流检测单元60电连接于所述电源单元10的负极和所述第二接口端n2之间,用于检测所述电源单元10的输出电流。所述控制单元50还与所述电流检测单元60电连接,以采集所述电流检测单元50所检测到的电流信号。当所述控制单元50所采集到的电流信号大于预设阈值时,所述控制单元50停止输出所述转换信号和/或所述驱动信号。

当电流检测单元60检测到的电流信号大于预设阈值时,说明系统存在故障或者短路的情况,此时应断开电源单元10和负载200之间的电性连接,如此,可以对开关单元20及负载200进行保护,延长开关单元20及负载200的使用寿命。

请参阅图4,其为本申请一实施例中的nmos开关驱动电路100的电路原理图。如图4所示,所述开关单元20包括第一nmos场效应管q1、第二nmos场效应管q2以及第一至第三电阻r1-r3。所述第一nmos场效应管q1的栅极通过所述第一电阻r1与所述驱动单元40相连;所述第一nmos场效应管q1的漏极与所述电源单元10的正极相连;所述第一nmos场效应管q1的源极与参考零点dr-gnd相连,且还通过所述第二电阻r2与所述驱动单元40相连。所述第二nmos场效应管q2的栅极通过所述第三电阻r3与所述驱动单元40相连;所述第二nmos场效应管q2的源极与参考零点dr-gnd相连,且还通过所述第二电阻r2与所述驱动单元40相连;所述第二nmos场效应管q2的漏极与所述第一接口端n1相连。

其中,参考零点dr-gnd是相对nmos驱动开关的驱动电压而言的,并不是实际的“地”。例如,参考零点的电压可以是1v,2v或者其他。本实施方式中,在第一nmos场效应管q1没有导通时,参考零点dr-gnd的电位为0,而当第一nmos场效应管q1导通后,参考零点dr-gnd的电位为电源单元10的输出电压。

可以理解,在其他实施方式中,为了提高开关单元20的过流能力,所述开关单元20可以包括多组并联的第一nmos场效应管q1和第二nmos场效应管q2,具体数量,在此不做限定。当然,在一些实施方式中,开关单元20还可以只包括一个nmos场效应管。

所述电源转换单元30包括第一电子开关t1、第二电子开关t2、转换电源u1以及第四至第五电阻r4-r5。所述第一电子开关t1的控制端与所述控制单元50相连;所述第一电子开关t1的第一连接端与电源单元10的负极相连;所述第一电子开关t1的第二连接端通过所述第四电阻r4与所述第二电子开关t2的控制端相连。第二电子开关t2的第一连接端与所述电源单元10的正极相连;所述第二电子开关t2的第二连接端与所述转换电源u1的第一输入端相连;所述第二电子开关t2的控制端还通过所述第五电阻r5与所述第二电子开关t2的第一连接端相连。所述转换电源u1的第二输入端与所述电源单元10的负极相连;所述转换电源u1的第一输出端与所述驱动单元40相连;所述转换电源u1的第二输出端与参考零点相连。

可以理解,转换电源u1是一种宽输入范围稳压源,可以将波动的输入电压转换成稳定的输出电压。例如,转换电源u1可以是dc-dc转换器,可以实现boost升压、buck降压、boost-buck升降压、自举转换等。

在本实施方式中,所述第一电子开关t1为npn型三极管。所述第一电子开关t1的控制端、第一连接端和第二连接端分别对应所述npn型三极管的基极、发射极和集电极。在本实施方式中,所述npn型三极管集成有偏置电阻。

所述第二电子开关t2为pmos场效应管。所述第二电子开关t2的控制端、第一连接端和第二连接端分别对应所述pmos场效应管的栅极、源极和漏极。在本实施方式中,所述pmos场效应管带有寄生二极管。

所述驱动单元40包括光耦u2、第三电子开关t3、第四电子开关t4及第六至第七电阻r6-r7。所述光耦u2的第一输入端i1通过所述第六电阻r6与所述控制单元50相连;所述光耦u2的第二输入端i2与所述电源单元10的负极相连;所述光耦u2的第一输出端o1与所述第三电子开关t3的控制端相连;所述光耦u2的第二输出端o2与参考零点dr-gnd相连。所述第三电子开关t3的第一连接端与参考零点dr-gnd相连;所述第三电子开关t3的第二连接端与所述第四电子开关t4的第一连接端相连。所述第四电子开关t4的控制端通过所述第七电阻r7与所述电源转换单元30相连;所述第四电子开关t4的第二连接端与所述电源转换单元30相连。

在一种实施方式中,所述光耦u2包括发光元件d1及受光元件q3。所述发光元件d1的第一端作为所述光耦u2的第一输入端i1,所述发光元件d1的第二端作为所述光耦u2的第二输入端i2,所述受光元件q3的第一端作为所述光耦u2的第一输出端o1,所述受光元件q3的第二端作为所述光耦u2的第二输出端。

在本实施方式中,所述光元件d1为发光二极管,所述发光元件d1的第一端及第二端分别对应于所述发光二极管的阳极及阴极。所述受光元件q3为光敏三极管,所述受光元件q3的第一端及第二端分别对应于所述光敏三极管的集电极及发射极。

在本实施方式中,所述第三电子开关t3为pnp型三极管。所述第三电子开关t3的控制端、第一连接端及第二连接端分别对应于pnp型三极管的基极、集电极及发射极。所述第四电子开关t4为npn型三极管,所述第四电子开关t4的控制端、第一连接端及第二连接端分别对应于npn型三极管的基极、发射极及集电极。在其它实施方式中,所述第三电子开关t3还可为具有类似功能的其它开关,如pmos场效应管及igbt(insu1latedgatebipolartransistor,绝缘栅双极型晶体管)等。所述第四电子开关t4可为具有类似功能的其它开关,如nmos场效应管及igbt等。

所述电流采集单元60包括电流采样电阻ri。例如,在一种实施方式中,可以将电流采样电阻ri的两端接入运算放大器的两个输入端,通过运算放大器进行放大后的输出的电压来判断电路中的电流是否超过预设阈值,此为现有技术,在此不做过多论述。在其他实施方式中,电流采样单元60还可包括电流传感器(如霍尔传感器),通过电流传感器来采集电路中的电流。

下面对图4中的nmos开关驱动电路100的工作原理进行介绍。

当控制单元50检测到负载200接入到第一接口端n1和第二接口端n2且需要启动负载200时,控制单元50分别输出高电平信号和低电平信号至第一电子开关t1和光耦u2。其中,输出至第一电子开关t1的高电平信号为转换信号,输出至光耦的u2的低电平信号为驱动信号。第一电子开关t1接收到高电平信号导通,进而使得第二电子开关t2的栅极为低电平而导通,此时,电源单元10输出的第一电压可以通过第二电子开关t2输出至转换电源u1,转换电源u1将第一电压转换成恒定的驱动电压后输出。

当光耦u2接收到低电平信号时,发光元件d1因截止而不发光,受光元件q3因未接收到光而截止,使得第三电子开关t3的基极为高电平而截止,且第四电子开关t4导通,如此,转换电源u1输出的的驱动电压可以输出至第一nmos场效应管q1和第二nmos场效应管q2,进而驱动第一nmos场效应管q1和第二nmos场效应管q2导通,而使得电源单元10输出第一电压可以输出至负载,以为负载200供电。

请参阅图5,在一些实施方式中,所述电源转换单元30还包括第一二极管d2以及至少一个电容。在本申请实施方式中,所述电源转换单元30包括第一电容c1和第二电容c2。所述第一二极管d2的阳极连接于所述第二电子开关t2的第二连接端,所述第一二极管d2的阴极与所述转换电源u1的第一输入端相连。所述第一电容c1和第二电容c2并联于所述转换电源u1的第一输入端和所述电源单元10的负极之间。如此,当电源单元10瞬间掉电时,可以由第一电容c1和第二电容c2继续为负载200供电,进一步提高了负载200工作的稳定性。

所述驱动单元40还包括第二二极管d3和第三电容c3。所述第二二极管d3的阳极与所述转换电源u1的第一输出端电连接,且所述第二二极管d3的阴极与所述第四电子开关t4的第二连接端电连接。所述第三电容c3的一端与所述第二二极管d3的阴极相连,且另一端接参考零点dr-gnd。如此,当转换电源u1瞬间故障时,可以由第三电容c3继续向负载200供电,进一步提高了系统工作的稳定性和可靠性。

此外,为了提高光耦u2的使用寿命,所述驱动单元40还包括第五电子开关t5、第六电子开关t6及第八至第十电阻r8-r10。所述第五电子开关t5的控制端通过所述第八电阻r8连接至参考零点dr-gnd;所述第五电子开关t5的第一连接端与参考零点dr-gnd相连;所述第五电子开关t5的第二连接端与所述第三电子开关的控制端相连。所述第五电子开关t5的控制端还通过所述第九电阻r9与所述第六电子开关t6的第一连接端相连;所述第六电子开关t6的控制端与所述光耦u2的第一输出端o1相连,且所述第六电子开关t6的控制端还通过所述第十电阻r10与所述第二二极管d3的阴极相连;所述第六电子开关t6的第二连接端与所述第二二极管d3的阴极相连。

下面对图5中的nmos开关驱动电路100的工作原理进行介绍。

当控制单元50检测到负载200接入到第一接口端n1和第二接口端n2且需要启动负载200时,控制单元50分别输出高电平信号至第一电子开关t1和光耦u2。其中,输出至第一电子开关t1的高电平信号为转换信号,输出至光耦的u2的高电平信号为驱动信号。第一电子开关t1接收到高电平信号导通,进而使得第二电子开关t2的栅极为低电平而导通,此时,电源单元10输出的第一电压可以通过第二电子开关t2和第一二极管d2输出至转换电源u1,转换电源u1将第一电压转换成恒定的驱动电压后输出。当电源单元10瞬间掉电时,第一电容c1和第二电容c2存储的电量可以继续为负载200供电。

当光耦u2接收到高电平信号时,发光元件d1发光,受光元件q3因接收到光而导通,使得第六电子开关t6截止,且第五电子开关t5和第三电子开关t3截止,第四电子开关t4导通,如此,转换电源u1输出的驱动电压可以通过第二二极管d3输出至第一nmos场效应管q1和第二nmos场效应管q2,进而驱动第一nmos场效应管q1和第二nmos场效应管q2导通,而使得电源单元10输出第一电压可以输出至负载200以为负载200供电。当前端突然掉电时,第三电容c3存储的电容可以为负载200继续供电。

在本申请实施方式中,当不需要负载200供电时,光耦u2处于不工作的状态,只有在为负载200供电时,光耦u2才工作,进而可以延长光耦u2的使用寿命。

以上所述是本实用新型的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本实用新型的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1